Effect of the Porosity of a PSi Substrate on the Characteristics of CdS Nanoparticles Produced by the CBD Method

  • F. Saker Laboratory of Materials and System Structure and their Reliability, Oum El Bouaghi University, Oum El Bouaghi, Algeria
  • L. Remache Laboratory of Materials and System Structure and their Reliability, Oum El Bouaghi University, Oum El Bouaghi, Algeria
  • A. Rahmani Laboratory of physico-chemistry of materials LPCM, University of Laghouat, Laghouat, Algeria
  • H. Moualkia Faculty of natural and life sciences, department of material sciences, Oum El Bouaghi University, Oum El Bouaghi, Algeria
  • M.S. Aida Departement of physics, King Abdulaziz University, Jeddah, Makkah Province, Saudi Arabia
  • N. Guermit Larbi Ben M’hidi University, Oum El Bouaghi, Algeria
  • D. Belfennache Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-4908-6058
  • R. Yekhlef Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • Mohamed A. Ali School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt https://orcid.org/0000-0002-7390-8592
Keywords: Chalcogenide semiconductors, Porous silicon, CdS, Thin film, CBD

Abstract

The motivation for research to study the potential offered by semiconductor materials such as silicon is their use as a substrate for the manufacture of thin films. In this work the chemical bath deposition (CBD) method was used to synthesize Cadmium sulphide (CdS) thin films on glass, silicon (Si), and porous silicon (PSi) substrates. The PSi substrates were prepared by an electrochemical etching method using different current densities at constant etching time of 5 minutes. The obtained results demonstrated that the morphology of the deposited materials was influenced by the porosity of the PSi substrates. The average crystallite dimensions for CdS/glass and CdS/Si were determined to be 46.12 nm and 23.08 nm, respectively. In CdS/PSi structures, the average value of the grain size decreases with increasing porosity. The smallest one is obtained for the CdS/PSi structure with 70% porosity, amounting to 11.55 nm. The measured current-voltage characteristics in coplanar structure on the CdS/PSi/Si sample showed that the photocurrent of the CdS/Si structure is of 3.17 µA and increases up to 600 µA for the CdS/PSi/60% structure.

Downloads

Download data is not yet available.

References

Y. Benkrima, D. Belfennache, R. Yekhlef, and A.M. Ghaleb, Chalcogenide Lett. 20(8), 609 (2023). https://doi.org/10.15251/CL.2023.208.609.

M. Husham, Z. Hassan, and A.M. Selman. Eur. Phys. J. Appl. Phys. 74(1), 10101 (2016). https://doi.org/10.1051/epjap/2016150414

D. Belfennache, D. Madi, R. Yekhlef, L. Toukal, N. Maouche, M.S. Akhtar, and S. Zahra, Semicond. Phys. Quantum Electron. Optoelectron. 24(4), 378 (2021). https://doi.org/10.15407/spqeo24.04.378

S. Mahdid, D. Belfennache, D. Madi, M. Samah, R. Yekhlef, and Y. Benkrima, J. Ovonic. Res. 19(5), 535 (2023). https://doi.org/10.15251/JOR.2023.195.535

P. Priyadarshini, S. Das, and R. Naik, RSC Advances, 12(16), 9599 (2022). https://doi.org/10.1039/D2RA00771A

A.M. Abu-Dief, Journal of Nanotechnology and Nanomaterials, 1(1), 5 (2020). https://doi.org/10.33696/Nanotechnol.1.002

Y. Xi, C. Hu, C. Zheng, H. Zhang, R. Yang, and Y. Tian, Mater. Res. Bull. 45(10), 1476 (2010). https://doi.org/10.1016/j.materresbull.2010.06.007

Y. Ma, X. Li, Z. Yang, H. Yu, P. Wang, and L. Tong, Appl. Phys. Lett. 97(15), 153122 (2010). https://doi.org/10.1063/1.3501969

J. Zhang, D. Li, R. Chen, and Q. Xiong, Nature, 493(7433), 504 (2013). https://doi.org/10.1038/nature11721

D. Li, J. Zhang, Q. Zhang, and Q. Xiong. Nano Lett. 12(6), 2993 (2012). https://doi.org/10.1021/nl300749z

D. Li, J. Zhang, and Q. Xiong, ACS Nano, 6(6), 5283 (2012). https://doi.org/10.1021/nn301053r

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, Nanoscale, 2(2), 168 (2010). https://doi.org/10.1039/B9NR00415G

H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, and T. Zhai, Adv. Mater. 25(22), 3017 (2013). https://doi.org/10.1002/adma.201300244

A. Ashok, G. Regmi, A. Romero-Nunez, M. Solis-Lopez, S. Velumani, and H. Castaneda, J. Mater. Sci. Mater. Electron. 31, 74997518 (2020). https://doi.org/10.1007/s10854-020-03024-3

S. Hariech, J. Bougdira, M. Belmahi, G. Medjahdi, M.S. Aida, and A. Zertal, Bull. Mater. Sci. 45(2), 78 (2022). https://doi.org/10.1007/s12034-022-02661-0

S. Hariech, M.S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Gen`eve, N. Attaf, and H. Rinnert, J. Semicond. 39(3), 034004 (2018). https://doi.org/10.1088/1674-4926/39/3/034004

H. Khallaf, Ph.D. Thesis Dissertations. University of Central Florida, (2009). https://stars.library.ucf.edu/etd/3941

D. Belfennache, N. Brihi, and D. Madi, in: Proceeding of the IEEE xplore, 8th (ICMIC) (2016). 7804164 (2017), pp. 497–502. https://doi.org/10.1109/ICMIC.2016.7804164.

D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z

R. Pribyl, S. Kelarova, M. Karkus, and V. Bursikova, Carbon Trends, 17, 100416 (2024). https://doi.org/10.1016/j.cartre.2024.100416

S. Morishita, M. Kunihiro, M. Funahashi, and N. Tsurumachi, J. Mol. Liq. 126425 (2024). https://doi.org/10.1016/j.molliq.2024.126425

T.A.-H. Abbas, Diyala journal for pure sciences, 13(3), 227 (2017). https://doi.org/10.24237/djps.1303.261A

R. Ouldamer, D. Madi, D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022I, edited by M. Hatti, 591, (Springer, Cham. 2023), pp. 700-705. https://doi.org/10.1007/978-3-031-21216-1_71

E.V. Pasos, B. Wagner, F. Xu, Y. Wang, M. Kim, M. Zachariah, and L. Mangolini, Chem Eng J. 500, 156997 (2024). https://doi.org/10.1016/j.cej.2024.156997

R. Ouldamer, D. Belfennache, D. Madi, R. Yekhlef, S. Zaiou, and M.A. Ali, J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45

N. Naderi, and M. Hashim Int. J. Electrochem. Sci. 7(11), 11512 (2012). https://doi.org/10.1016/S1452-3981(23)16962-8

I. González, R. Nava, M. Cruz-Irisson, J.A. del Río, I. Ornelas-Cruz, J. Pilo, Y.G. Rubo, et al., J. Energy Storage, 102, 114087 (2024). https://doi.org/10.1016/j.est.2024.114087

T. Jalkanen, A. Maattanen, E. Makila, et al., Journal of Sensors, 927396 (2015). https://doi.org/10.1155/2015/927396

N. Rahmani, and R.S. Dariani, AIP Advances, 5, 077112 (2015). https://doi.org/10.1063/1.4926460

N. Rahmani, R.S. Dariani, and M. Rajabi, Appl. Surf. Sci. 366, 359 (2016) https://doi.org/10.1016/j.apsusc.2016.01.075

A. Halimaoui, “Porous silicon: material processing, properties and applications,” in: Porous Silicon Science and Technology, edited by J.C. Vial, and J. Derrien, (Centre de Physique des Houches, Springer Berlin Heidelberg, 1995). 1, pp. 33 52. https://doi.org/10.1007/978-3-662-03120-9_3

M. Du Plessis, Physica Status Solidi (a), 204(7), 2319 (2007). https://doi.org/10.1002/pssa.200622237

M. Lai, L. Wei, Y-H Huang, X-D Wang, and Z. Yang. ACS Photonics, 11(6), 2439 (2024). https://doi.org/10.1021/acsphotonics.4c00335J

A. Jane, R. Dronov, A. Hodges, and N.H. Voelcker, 27(4), 230 (2009). https://doi.org/10.1016/j.tibtech.2008.12.004

A. Rahmani, L. Remache, M. Guendouz, M.S. Aida, and Z. Hebboul, Appl. Phys. A, 127(5), 396 (2021). https://doi.org/10.1007/s00339-021-04548-z

C-M. Chou, H-T. Cho, V.K. Hsiao, K-T. Yong, W-C. Law, Nanoscale Res. Lett. 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-291

B. Meier, L. Egermann, S. Voigt, M. Stanel, H. Kempa, and A.C. Huebler, Thin Solid Films, 519(19), 6610 (2011). https://doi.org/10.1016/j.tsf.2011.04.225

S.A. Hasoon, I.M. Ibrahim, R. Al-Haddad, and S.S. Mahmood, Int. J. Curr. Eng. Technol. 4(2), 594 (2014).

S.T. Kassim, H.A. Hadi, and R.A. Ismail, Optik, 221, 165339 (2020). https://doi.org/10.1016/j.ijleo.2020.165339

A. Rahmani, L. Remache, M. Guendouz, N. Lorrain, A. Djermane, and L. Hadjeris, Surf. Rev. Lett. 29(03), 2250039 (2022). https://doi.org/10.1142/S0218625X22500391

K.S. Khashan, Int. J. Mod. Phys. B, 25(02), 277 (2011). https://doi.org/10.1142/S0217979211054744

N.F. Habubi, R.A. Ismail, A.N. Abd, and W.K. Hamoudi, Indian J. Pure Appl. Phys. 53, 718-724 (2015).

Y. Li, X.Y. Song, Y.L. Song, P.F. Ji, F.Q. Zhou, M.L. Tian, H.C. Huang, and X.J. Li, Mater. Res. Bull. 74, 507 (2016). https://doi.org/10.1016/j.materresbull.2015.11.023

P.M. Perillo, and D.F. Rodriguez, Physica B: Condensed Matter, 680, 415828 (2024). https://doi.org/10.1016/j.physb.2024.415828

M. Cao, Y. Sun, J. Wu, X. Chen, and N. Dai, J. Alloys Compd. 508(2), 297 (2010) https://doi.org/10.1016/j.jallcom.2010.08.066

C. Tsai, D. Chuu, G. Chen, and S. Yang. J. Appl. Phys. 79(12), 9105 (1996) https://doi.org/10.1063/1.362645

B-S. Moon, J-H. Lee, and H. Jung. Thin solid films, 511, 299 (2006) https://doi.org/10.1016/j.tsf.2005.11.080

D.W. Niles, and H. Hochst, Phys. Rev. B, 41(18), 12710 (1990). https://doi.org/10.1103/PhysRevB.41.12710

J. Patel, F. Mighri, A. Ajji, D. Tiwari, and T.K. Chaudhuri, Appl. Phys. A, 117, 1791 (2014) https://doi.org/10.1007/s00339-014-8659-x

M. Cao, L.Li, B. Zhang, J. Huang, K. Tang, H. Cao, Y. Sun, and Y. Shen, J. Alloys Compd. 530, 81 (2012). https://doi.org/10.1016/j.jallcom.2012.03.054

Z. Rabeel, M. Abbas, M. Basit, N.A. Shah, I. Ahmad, and M. Hassan, J. Adv Nanomat. 2(2), 113 (2017). https://dx.doi.org/10.22606/jan.2017.22004

S. A-J. Jassim, A.A.R.A. Zumaila, and G.A.A. Al Waly, Results Phys. 3, 173 (2013). https://doi.org/10.1016/j.rinp.2013.08.003

S.E. Haque, B. Ramdas, N. Padmavathy, and A. Sheela, Micro & Nano Letters, 9(10), 731 (2014). https://doi.org/10.1049/mnl.2014.0167

L. Ma, X. Ai, and X. Wu, J. Alloys. Compd. 691, 399 (2017). https://doi.org/10.1016/j.jallcom.2016.08.298

S. Thanikaikarasan, T. Mahalingam, T. Ahamad, S.M. Alshehri, J. Saudi Chem. Soc. 24(12), 955 (2020). https://doi.org/10.1016/j.jscs.2020.10.003

N. Maticiuc, and J. Hiie, IOP Conf. Ser.: Mater. Sci. Eng. 49(1), 012061 (2013). https://doi.org/10.1088/1757-899X/49/1/012061

F. Ouachtari, A. Rmili, B. Elidrissi, A. Bouaoud, H. Erguig, and P. Elies, J. Mod. Phys. 2(9), 1073 (2011). https://doi.org/10.4236/jmp.2011.29131

V.G. Nair, R. Jayakrishnan, J. John, J.A. Salam, and A.M. Anand, A. Raj, Mater. Chem. Phys. 247, 122849 (2020). https://doi.org/10.1016/j.matchemphys.2020.122849

D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.R. Reddy, and R. Sayanna, Modern Research in Catalysis, 5(4), 130 (2016). https://doi.org/10.4236/mrc.2016.54011; M. Shaban, M. Mustafa, and A. El Sayed, Mater. Sci. Semicond. Process. 56, 329 (2016). https://doi.org/10.1016/j.mssp.2016.09.006

G. Mani, and J.B.B. Rayappan, Appl. Surf. Sci. 311, 405 (2014). https://doi.org/10.1016/j.apsusc.2014.05.075

Published
2025-03-03
Cited
How to Cite
Saker, F., Remache, L., Rahmani, A., Moualkia, H., Aida, M., Guermit, N., Belfennache, D., Yekhlef, R., & Ali, M. A. (2025). Effect of the Porosity of a PSi Substrate on the Characteristics of CdS Nanoparticles Produced by the CBD Method. East European Journal of Physics, (1), 160-169. https://doi.org/10.26565/2312-4334-2025-1-15