Effect of the Porosity of a PSi Substrate on the Characteristics of CdS Nanoparticles Produced by the CBD Method
Abstract
The motivation for research to study the potential offered by semiconductor materials such as silicon is their use as a substrate for the manufacture of thin films. In this work the chemical bath deposition (CBD) method was used to synthesize Cadmium sulphide (CdS) thin films on glass, silicon (Si), and porous silicon (PSi) substrates. The PSi substrates were prepared by an electrochemical etching method using different current densities at constant etching time of 5 minutes. The obtained results demonstrated that the morphology of the deposited materials was influenced by the porosity of the PSi substrates. The average crystallite dimensions for CdS/glass and CdS/Si were determined to be 46.12 nm and 23.08 nm, respectively. In CdS/PSi structures, the average value of the grain size decreases with increasing porosity. The smallest one is obtained for the CdS/PSi structure with 70% porosity, amounting to 11.55 nm. The measured current-voltage characteristics in coplanar structure on the CdS/PSi/Si sample showed that the photocurrent of the CdS/Si structure is of 3.17 µA and increases up to 600 µA for the CdS/PSi/60% structure.
Downloads
References
Y. Benkrima, D. Belfennache, R. Yekhlef, and A.M. Ghaleb, Chalcogenide Lett. 20(8), 609 (2023). https://doi.org/10.15251/CL.2023.208.609.
M. Husham, Z. Hassan, and A.M. Selman. Eur. Phys. J. Appl. Phys. 74(1), 10101 (2016). https://doi.org/10.1051/epjap/2016150414
D. Belfennache, D. Madi, R. Yekhlef, L. Toukal, N. Maouche, M.S. Akhtar, and S. Zahra, Semicond. Phys. Quantum Electron. Optoelectron. 24(4), 378 (2021). https://doi.org/10.15407/spqeo24.04.378
S. Mahdid, D. Belfennache, D. Madi, M. Samah, R. Yekhlef, and Y. Benkrima, J. Ovonic. Res. 19(5), 535 (2023). https://doi.org/10.15251/JOR.2023.195.535
P. Priyadarshini, S. Das, and R. Naik, RSC Advances, 12(16), 9599 (2022). https://doi.org/10.1039/D2RA00771A
A.M. Abu-Dief, Journal of Nanotechnology and Nanomaterials, 1(1), 5 (2020). https://doi.org/10.33696/Nanotechnol.1.002
Y. Xi, C. Hu, C. Zheng, H. Zhang, R. Yang, and Y. Tian, Mater. Res. Bull. 45(10), 1476 (2010). https://doi.org/10.1016/j.materresbull.2010.06.007
Y. Ma, X. Li, Z. Yang, H. Yu, P. Wang, and L. Tong, Appl. Phys. Lett. 97(15), 153122 (2010). https://doi.org/10.1063/1.3501969
J. Zhang, D. Li, R. Chen, and Q. Xiong, Nature, 493(7433), 504 (2013). https://doi.org/10.1038/nature11721
D. Li, J. Zhang, Q. Zhang, and Q. Xiong. Nano Lett. 12(6), 2993 (2012). https://doi.org/10.1021/nl300749z
D. Li, J. Zhang, and Q. Xiong, ACS Nano, 6(6), 5283 (2012). https://doi.org/10.1021/nn301053r
T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, Nanoscale, 2(2), 168 (2010). https://doi.org/10.1039/B9NR00415G
H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, and T. Zhai, Adv. Mater. 25(22), 3017 (2013). https://doi.org/10.1002/adma.201300244
A. Ashok, G. Regmi, A. Romero-Nunez, M. Solis-Lopez, S. Velumani, and H. Castaneda, J. Mater. Sci. Mater. Electron. 31, 74997518 (2020). https://doi.org/10.1007/s10854-020-03024-3
S. Hariech, J. Bougdira, M. Belmahi, G. Medjahdi, M.S. Aida, and A. Zertal, Bull. Mater. Sci. 45(2), 78 (2022). https://doi.org/10.1007/s12034-022-02661-0
S. Hariech, M.S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Gen`eve, N. Attaf, and H. Rinnert, J. Semicond. 39(3), 034004 (2018). https://doi.org/10.1088/1674-4926/39/3/034004
H. Khallaf, Ph.D. Thesis Dissertations. University of Central Florida, (2009). https://stars.library.ucf.edu/etd/3941
D. Belfennache, N. Brihi, and D. Madi, in: Proceeding of the IEEE xplore, 8th (ICMIC) (2016). 7804164 (2017), pp. 497–502. https://doi.org/10.1109/ICMIC.2016.7804164.
D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z
R. Pribyl, S. Kelarova, M. Karkus, and V. Bursikova, Carbon Trends, 17, 100416 (2024). https://doi.org/10.1016/j.cartre.2024.100416
S. Morishita, M. Kunihiro, M. Funahashi, and N. Tsurumachi, J. Mol. Liq. 126425 (2024). https://doi.org/10.1016/j.molliq.2024.126425
T.A.-H. Abbas, Diyala journal for pure sciences, 13(3), 227 (2017). https://doi.org/10.24237/djps.1303.261A
R. Ouldamer, D. Madi, D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022I, edited by M. Hatti, 591, (Springer, Cham. 2023), pp. 700-705. https://doi.org/10.1007/978-3-031-21216-1_71
E.V. Pasos, B. Wagner, F. Xu, Y. Wang, M. Kim, M. Zachariah, and L. Mangolini, Chem Eng J. 500, 156997 (2024). https://doi.org/10.1016/j.cej.2024.156997
R. Ouldamer, D. Belfennache, D. Madi, R. Yekhlef, S. Zaiou, and M.A. Ali, J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45
N. Naderi, and M. Hashim Int. J. Electrochem. Sci. 7(11), 11512 (2012). https://doi.org/10.1016/S1452-3981(23)16962-8
I. González, R. Nava, M. Cruz-Irisson, J.A. del Río, I. Ornelas-Cruz, J. Pilo, Y.G. Rubo, et al., J. Energy Storage, 102, 114087 (2024). https://doi.org/10.1016/j.est.2024.114087
T. Jalkanen, A. Maattanen, E. Makila, et al., Journal of Sensors, 927396 (2015). https://doi.org/10.1155/2015/927396
N. Rahmani, and R.S. Dariani, AIP Advances, 5, 077112 (2015). https://doi.org/10.1063/1.4926460
N. Rahmani, R.S. Dariani, and M. Rajabi, Appl. Surf. Sci. 366, 359 (2016) https://doi.org/10.1016/j.apsusc.2016.01.075
A. Halimaoui, “Porous silicon: material processing, properties and applications,” in: Porous Silicon Science and Technology, edited by J.C. Vial, and J. Derrien, (Centre de Physique des Houches, Springer Berlin Heidelberg, 1995). 1, pp. 33 52. https://doi.org/10.1007/978-3-662-03120-9_3
M. Du Plessis, Physica Status Solidi (a), 204(7), 2319 (2007). https://doi.org/10.1002/pssa.200622237
M. Lai, L. Wei, Y-H Huang, X-D Wang, and Z. Yang. ACS Photonics, 11(6), 2439 (2024). https://doi.org/10.1021/acsphotonics.4c00335J
A. Jane, R. Dronov, A. Hodges, and N.H. Voelcker, 27(4), 230 (2009). https://doi.org/10.1016/j.tibtech.2008.12.004
A. Rahmani, L. Remache, M. Guendouz, M.S. Aida, and Z. Hebboul, Appl. Phys. A, 127(5), 396 (2021). https://doi.org/10.1007/s00339-021-04548-z
C-M. Chou, H-T. Cho, V.K. Hsiao, K-T. Yong, W-C. Law, Nanoscale Res. Lett. 7, 1 (2012). https://doi.org/10.1186/1556-276X-7-291
B. Meier, L. Egermann, S. Voigt, M. Stanel, H. Kempa, and A.C. Huebler, Thin Solid Films, 519(19), 6610 (2011). https://doi.org/10.1016/j.tsf.2011.04.225
S.A. Hasoon, I.M. Ibrahim, R. Al-Haddad, and S.S. Mahmood, Int. J. Curr. Eng. Technol. 4(2), 594 (2014).
S.T. Kassim, H.A. Hadi, and R.A. Ismail, Optik, 221, 165339 (2020). https://doi.org/10.1016/j.ijleo.2020.165339
A. Rahmani, L. Remache, M. Guendouz, N. Lorrain, A. Djermane, and L. Hadjeris, Surf. Rev. Lett. 29(03), 2250039 (2022). https://doi.org/10.1142/S0218625X22500391
K.S. Khashan, Int. J. Mod. Phys. B, 25(02), 277 (2011). https://doi.org/10.1142/S0217979211054744
N.F. Habubi, R.A. Ismail, A.N. Abd, and W.K. Hamoudi, Indian J. Pure Appl. Phys. 53, 718-724 (2015).
Y. Li, X.Y. Song, Y.L. Song, P.F. Ji, F.Q. Zhou, M.L. Tian, H.C. Huang, and X.J. Li, Mater. Res. Bull. 74, 507 (2016). https://doi.org/10.1016/j.materresbull.2015.11.023
P.M. Perillo, and D.F. Rodriguez, Physica B: Condensed Matter, 680, 415828 (2024). https://doi.org/10.1016/j.physb.2024.415828
M. Cao, Y. Sun, J. Wu, X. Chen, and N. Dai, J. Alloys Compd. 508(2), 297 (2010) https://doi.org/10.1016/j.jallcom.2010.08.066
C. Tsai, D. Chuu, G. Chen, and S. Yang. J. Appl. Phys. 79(12), 9105 (1996) https://doi.org/10.1063/1.362645
B-S. Moon, J-H. Lee, and H. Jung. Thin solid films, 511, 299 (2006) https://doi.org/10.1016/j.tsf.2005.11.080
D.W. Niles, and H. Hochst, Phys. Rev. B, 41(18), 12710 (1990). https://doi.org/10.1103/PhysRevB.41.12710
J. Patel, F. Mighri, A. Ajji, D. Tiwari, and T.K. Chaudhuri, Appl. Phys. A, 117, 1791 (2014) https://doi.org/10.1007/s00339-014-8659-x
M. Cao, L.Li, B. Zhang, J. Huang, K. Tang, H. Cao, Y. Sun, and Y. Shen, J. Alloys Compd. 530, 81 (2012). https://doi.org/10.1016/j.jallcom.2012.03.054
Z. Rabeel, M. Abbas, M. Basit, N.A. Shah, I. Ahmad, and M. Hassan, J. Adv Nanomat. 2(2), 113 (2017). https://dx.doi.org/10.22606/jan.2017.22004
S. A-J. Jassim, A.A.R.A. Zumaila, and G.A.A. Al Waly, Results Phys. 3, 173 (2013). https://doi.org/10.1016/j.rinp.2013.08.003
S.E. Haque, B. Ramdas, N. Padmavathy, and A. Sheela, Micro & Nano Letters, 9(10), 731 (2014). https://doi.org/10.1049/mnl.2014.0167
L. Ma, X. Ai, and X. Wu, J. Alloys. Compd. 691, 399 (2017). https://doi.org/10.1016/j.jallcom.2016.08.298
S. Thanikaikarasan, T. Mahalingam, T. Ahamad, S.M. Alshehri, J. Saudi Chem. Soc. 24(12), 955 (2020). https://doi.org/10.1016/j.jscs.2020.10.003
N. Maticiuc, and J. Hiie, IOP Conf. Ser.: Mater. Sci. Eng. 49(1), 012061 (2013). https://doi.org/10.1088/1757-899X/49/1/012061
F. Ouachtari, A. Rmili, B. Elidrissi, A. Bouaoud, H. Erguig, and P. Elies, J. Mod. Phys. 2(9), 1073 (2011). https://doi.org/10.4236/jmp.2011.29131
V.G. Nair, R. Jayakrishnan, J. John, J.A. Salam, and A.M. Anand, A. Raj, Mater. Chem. Phys. 247, 122849 (2020). https://doi.org/10.1016/j.matchemphys.2020.122849
D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.R. Reddy, and R. Sayanna, Modern Research in Catalysis, 5(4), 130 (2016). https://doi.org/10.4236/mrc.2016.54011; M. Shaban, M. Mustafa, and A. El Sayed, Mater. Sci. Semicond. Process. 56, 329 (2016). https://doi.org/10.1016/j.mssp.2016.09.006
G. Mani, and J.B.B. Rayappan, Appl. Surf. Sci. 311, 405 (2014). https://doi.org/10.1016/j.apsusc.2014.05.075
Copyright (c) 2025 F. Saker, L. Remache, A. Rahmani, H. Moualkia, M.S. Aida, N. Guermit, D. Belfennache, R. Yekhle, Mohamed A. Ali

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).