Structural, Electronic and Elastic Properties of Potassium Iodide, under Pressure: An Ab-Initio Analysis Study
Abstract
In this work, a recent version of the full potential linear muffin-tin orbitals (FP-LMTO) method was employed, using the local density approximation (LDA) within the framework of density functional theory (DFT). This approach was applied to study the structural, electronic and elastic behavior of the potassium iodide (KI) compound under pressure. The calculated structural parameters exhibit strong agreement with available theoretical and experimental data. The RS phase was identified as the most stable structure for KI material. The phase transition from NaCl-type (B1) to CsCl-type (B2) phase occurs at pressure of 1.633 GPa, which is quite consistent with the experimental values. Furthermore, the band structure of KI revealed a wide-band gap semiconductor behavior across all examined phases. The obtained bulk modulus values were relatively low, suggesting weak resistance to fracture. The elastic constants for KI in RS, CsCl, ZnS, HCP, and WZ structures were determined and found to meet Born’s stability conditions. We esteem, there is no values available in the literature on the elastic constants for KI in CsCl, ZnS and WZ phases. All analyzed structures displayed ductile characteristics and ionic bonding features. Additionally, anisotropic properties were observed in all phases. The compound’s stiffness was evaluated using Poisson’s ratio and Cauchy’s pressure. Results indicated that the CsCl phase is the most rigid among the studied configurations.
Downloads
References
B.P. Mamula, B. Kuzmanović, M.M. Ilić, N. Ivanović, and N. Novaković, Physica B: Condensed Matter, 545(36), 146 (2018). https://doi.org/10.1016/j.physb.2018.06.008
R.G. Bessent, and A.W. Runciman, Br. J. Appl. Phys. 17(8), 991 (1966). https://doi.org/10.1088/0508-3443/17/8/302
L.S. Combes, S.S. Ballard, and K.A. McCarthy, JOSA, 41(4), 215 (1951). https://doi.org/10.1364/JOSA.41.000215
J.T. Lewis, A. Lehoczky, and C.V. Briscoe, Phys. Rev. 161(3), 877 (1967) https://doi.org/10.1103/PhysRev.161.877
K. Asaumi, and Mori, T. Phys. Rev. B, 28(6), 3529 (1983). https://doi.org/10.1103/PhysRevB.28.3529
K.J. Teegarden, Phys. Rev. 105(4), 1222 (1957). https://doi.org/10.1103/PhysRev.105.1222
Y. Ramola, C.N. Louis, and A. Amalraj, Chem. Mater. Eng. 5(3), 65 (2017). https://doi.org/10.13189/cme.2017.050302
Y. Ramola, J. Merlinebetsy, C.N. Louis, and A. Amalraj, Chemical and Materials Engineering, 7(2), 9 (2019). https://doi.org/10.13189/cme.2019.070201
The COSINE-100 Collaboration, 564, 83 (2018). https://doi.org/10.1038/s41586-018-0739-1
C. Yam, C. Ma, X. Wang, and G. Chen, Appl. Phys. Lett. 85(19), 4484 (2004). https://doi.org/10.1063/1.1819510
I. Ohlídal, and D. Franta, Handbook of Optical Constants of Solids, 3, 857 (1997). https://doi.org/10.1016/B978-012544415-6.50136-9
R.B. Jacobs, Phys. Rev. 54(6), 468 (1938). https://doi.org/10.1103/PhysRev.54.468
S.T. Weir, J. Akella, C. Aracne-Ruddle, Y.K. Vohra, and S.A. Catledge, Appl. Phys. Lett. 77(21), 3400 (2000). https://doi.org/10.1063/1.1326838
P. Cortona, Phys. Rev. B, 46, 2008 (1992). https://doi.org/10.1103/PhysRevB.46.2008
Z.P. Chang, and G.R. Barsch, J. Phys. Chem. Solids, 32(1), 27 (1971). https://doi.org/10.1016/S0022-3697(71)80005-7
M. Ghafelehbashi, D.P. Dandekar, and A.L. Ruoff, J. Appl. Phys. 41(2), 652 (1970). https://doi.org/10.1063/1.1658728
G.R. Barsch, and H.E. Shull, Physica status solidi (b), 43(2), 637 (1971). https://doi.org/10.1002/pssb.2220430224
A. Asenbaum, O. Blaschko, and H.D. Hochheimer, Phys. Rev. B, 34(3), 1968 (1986). https://doi.org/10.1103/PhysRevB.34.1968
A.K. Sarkar, and S. Sengupta, Physica status solidi (b), 36(1), 359 (1969). https://doi.org/10.1002/pssb.19690360137
K. Teegarden, and G. Baldini, Phys. Rev. 155(3), 896 (1967). https://doi.org/10.1103/PhysRev.155.896
J.J. Hopfield, and J.M. Worlock, Phys. Rev. 137, A1455 (1965). https://doi.org/10.1103/PhysRev.137.A1455
J. Li, C.G. Duan, Z.Q. Gu, and D.S. Wang, Phys. Rev. B, 57(4), 2222 (1998). https://doi.org/10.1103/PhysRevB.57.2222
M. Bashi, H.R, Aliabad, A.A. Mowlavi, I. Ahmad, Solid State Nucl. Magn. Reson. 82, 10 (2017). https://doi.org/10.1016/j.ssnmr.2016.12.009
M.H. Norwood, and C.V Briscoe, Physical Review, 112(1), 45 (1958). https://doi.org/10.1103/PhysRev.112.45
P.W. Bridgman, Proc. Am. Acad. Arts Sci. 64, 305 (1929). http://nobelprize.org/nobel_prizes/physics/laureates/1946/bridgman-bio.html
C. Gahn, and A. Mersmann, Chem. Eng. Sci. 54(9), 1273 (1999). https://doi.org/10.1016/S0009-2509(98)00450-3
Y. Benkrima, D. Belfennache, R. Yekhlef, and A.M. Ghaleb, Chalcogenide Lett. 20, 609 (2023). https://doi.org/10.15251/CL.2023.208.609
Y. Achour, Y. Benkrima, I. Lefkaier, and D. Belfennache, J. Nano- Electron. Phys. 15(1), 01018 (2023) https://doi.org/10.21272/jnep.15(1).01018
Y. Benkrima, D. Belfennache, R. Yekhlef, M.E. Soudani, A. Souiga, and Y. Achour, East Eur. J. Phys. (2), 150 (2023). DOI:10.26565/2312-4334-2023-2-14
H.R. Djabri, R. Khatir, S. Louhibi-Fasla, I. Messaoudi, and H. Achour, Comput. Condens. Matter, 10, 15 (2017). https://doi.org/10.1016/j.cocom.2016.04.003
Y. Benkrima, A. Achouri, D. Belfennache, R. Yekhlef, and N. Hocine, East Eur. J. Phys. (2), 215 (2023). DOI:10.26565/2312-4334-2023-2-23
Y. Benkrima, S. Benhamida, and D. Belfennache, Dig. J. Nanomater. Bios. 18(1), 11 (2023) https://doi.org/10.15251/DJNB.2023.181.11
Y. Benkrima, M.E. Soudani, D. Belfennache, H. Bouguettaia, and A. Souigat, J. Ovonic. Res. 18(6), 797 (2022). https://doi.org/10.15251/JOR.2022.186.797
H.G. Drickamer, R.W. Lynch, R.L. Clendenen, and E.A. Perez-Albueene, Solid State Phys. 19, 135 (1967). https://doi.org/10.1016/S0081-1947(08)60529-9
N. Beloufa, Y. Cherchab, S. Louhibi-Fasla, S. Daoud, H. Rekab-Djabri, and A. Chahed, Comput. Condens. Matter. 30, e00642 (2022). https://doi.org/10.1016/j.cocom.2022.e00642
N. Rahman, M. Husain, W. Ullah, A. Azzouz-Rached, Y.M. Alawaideh, H. Albalawi, Z. Bayhan, et al., Inorg. Chem. Commun. 166, 112625 (2024). https://doi.org/10.1016/j.inoche.2024.112625
S. Daoud, P.K. Saini, and H. Rekab-Djabri, J. Nano- Electron. Phys. 12(6), 06008 (2020). https://doi.org/10.21272/jnep.12(6).06008
R. Yagoub, H.R. Djabri, S. Daoud, N. Beloufa, M. Belarbi, A. Haichour, C. Zegadi, and S.L. Fasla, Ukr. J. Phys. 66, 699 (2021). DOI: 10.15407/ujpe66.8.699
J. Yan, J. Zhao, J. Sheng, B. Wang, and J. Zhao, Mater. Today Commun. 41, 110966 (2024). https://doi.org/10.1016/j.mtcomm.2024.110966
K. Burke, Friends, The ABC of DFT, (Department of Chemistry, University of California, Irvine, CA 2007).
J.P. Perdew, Phys. Rev. B, 33(12), 8822 (1986). https://doi.org/10.1103/PhysRevB.33.8822
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
A.D. Becke, and E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006). https://doi.org/10.1063/1.2213970
R. Hill, Proc. Phys. Soc. A, 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307
J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, J. Chem. Phys. 120(15), 6898 (2004). https://doi.org/10.1063/1.1665298
A.D. Becke, and E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006). https://doi.org/10.1063/1.2213970
A.D. Becke, and M.R. Roussel, Phys. Rev. A, 39(8), 3761 (1989). https://doi.org/10.1103/PhysRevA.39.3761
F. Tran, and P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
Y. Guermit, K. Hocine, M. Drief, T. Lantri, H. Rekab-Djabri, A. Maizia, and N.E. Benkhettou, Opt. Quant. Electron. 56(4), 537 (2024). https://doi.org/10.1007/s11082-023-06056-1
F. Benguesmia, A. Benamrani, L. Boutahar, H. Rekab-Djabri, and S. Daoud, J. Phys. Chem. Res. 1(2), 25 (2022). https://doi.org/10.58452/jpcr.v1i2.24
J. Jiang, J. Chem. Phys. 138(13), 134115 (2013). https://doi.org/10.1063/1.4798706
O.K. Andersen, Phys. Rev. B, 12(8), 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060
R. Jaradat, M. Abu-Jafar, I. Abdelraziq, S.B. Omran, D. Dahliah, and R. Khenata, Mater. Chem. Phys. 208, 132 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.037
P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59(2), 399 (1990). https://doi.org/10.1016/0010-4655(90)90187-6
H. Ibach, and H. Lueth, Solid-state physics. An introduction to principles of materials science, (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-93804-04
S.H. Simon, Problems for Solid State Physics, (3rd Year Course 6) Hilary Term, (Oxford University, 2011).
M. Born, K. Huang, and M. Lax, Journal of Physics, 23(7), 474 (1955). https://doi.org/10.1119/1.1934059
Copyright (c) 2025 Hamza Rekab-Djabri, S. Zaiou, Ahmed Azzouz-Rached, Ammar Benamrani, Salah Daoud, D. Belfennache, R. Yekhlef, Nabil Beloufa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



