Structural, Electronic and Elastic Properties of Potassium Iodide, under Pressure: An Ab-Initio Analysis Study

  • Hamza Rekab-Djabri Laboratory of Micro and Nanophysics (LaMiN), National Polytechnic School Oran, Oran, Algeria; Faculty of Nature and Life Sciences and Earth Sciences AMO University, Bouira, Algeria https://orcid.org/0000-0002-2458-1335
  • S. Zaiou Laboratory for Studies of Surfaces and Interfaces of Solid Materials (LESIMS), University Setif 1, Setif, Algeria; Faculty of Natural Sciences and Life, Setif-1 University, Setif, Algeria
  • Ahmed Azzouz-Rached Faculty of Sciences, Saad Dahleb University of Blida 1, Blida, Algeria https://orcid.org/0000-0003-4852-1000
  • Ammar Benamrani Laboratory of Materials Physics, Radiation and Nanostructures (LPMRN), Faculty of Sciences and Technology, University of Mohamed El Bachir El Ibrahimi-BBA, Bordj Bou Arreridj, Algeria https://orcid.org/0000-0002-6886-656X
  • Salah Daoud Laboratory of Materials and Electronic Systems, Faculty of Sciences and Technology, University Mohamed El Bachir El Ibrahimi of BBA, Bordj Bou Arreridj, Algeria
  • D. Belfennache Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-4908-6058
  • R. Yekhlef Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • Nabil Beloufa Hydrometeorological Institut for Formation and Research IHFR, Oran, Algeria
Keywords: Potassium iodide (KI), FP-LMTO, Electronic properties, Elastic properties, Phase transition

Abstract

In this work, a recent version of the full potential linear muffin-tin orbitals (FP-LMTO) method was employed, using the local density approximation (LDA) within the framework of density functional theory (DFT). This approach was applied to study the structural, electronic and elastic behavior of the potassium iodide (KI) compound under pressure. The calculated structural parameters exhibit strong agreement with available theoretical and experimental data. The RS phase was identified as the most stable structure for KI material. The phase transition from NaCl-type (B1) to CsCl-type (B2) phase occurs at pressure of 1.633 GPa, which is quite consistent with the experimental values. Furthermore, the band structure of KI revealed a wide-band gap semiconductor behavior across all examined phases. The obtained bulk modulus values were relatively low, suggesting weak resistance to fracture. The elastic constants for KI in RS, CsCl, ZnS, HCP, and WZ structures were determined and found to meet Born’s stability conditions. We esteem, there is no values available in the literature on the elastic constants for KI in CsCl, ZnS and WZ phases. All analyzed structures displayed ductile characteristics and ionic bonding features. Additionally, anisotropic properties were observed in all phases. The compound’s stiffness was evaluated using Poisson’s ratio and Cauchy’s pressure. Results indicated that the CsCl phase is the most rigid among the studied configurations.

Downloads

Download data is not yet available.

References

B.P. Mamula, B. Kuzmanović, M.M. Ilić, N. Ivanović, and N. Novaković, Physica B: Condensed Matter, 545(36), 146 (2018). https://doi.org/10.1016/j.physb.2018.06.008

R.G. Bessent, and A.W. Runciman, Br. J. Appl. Phys. 17(8), 991 (1966). https://doi.org/10.1088/0508-3443/17/8/302

L.S. Combes, S.S. Ballard, and K.A. McCarthy, JOSA, 41(4), 215 (1951). https://doi.org/10.1364/JOSA.41.000215

J.T. Lewis, A. Lehoczky, and C.V. Briscoe, Phys. Rev. 161(3), 877 (1967) https://doi.org/10.1103/PhysRev.161.877

K. Asaumi, and Mori, T. Phys. Rev. B, 28(6), 3529 (1983). https://doi.org/10.1103/PhysRevB.28.3529

K.J. Teegarden, Phys. Rev. 105(4), 1222 (1957). https://doi.org/10.1103/PhysRev.105.1222

Y. Ramola, C.N. Louis, and A. Amalraj, Chem. Mater. Eng. 5(3), 65 (2017). https://doi.org/10.13189/cme.2017.050302

Y. Ramola, J. Merlinebetsy, C.N. Louis, and A. Amalraj, Chemical and Materials Engineering, 7(2), 9 (2019). https://doi.org/10.13189/cme.2019.070201

The COSINE-100 Collaboration, 564, 83 (2018). https://doi.org/10.1038/s41586-018-0739-1

C. Yam, C. Ma, X. Wang, and G. Chen, Appl. Phys. Lett. 85(19), 4484 (2004). https://doi.org/10.1063/1.1819510

I. Ohlídal, and D. Franta, Handbook of Optical Constants of Solids, 3, 857 (1997). https://doi.org/10.1016/B978-012544415-6.50136-9

R.B. Jacobs, Phys. Rev. 54(6), 468 (1938). https://doi.org/10.1103/PhysRev.54.468

S.T. Weir, J. Akella, C. Aracne-Ruddle, Y.K. Vohra, and S.A. Catledge, Appl. Phys. Lett. 77(21), 3400 (2000). https://doi.org/10.1063/1.1326838

P. Cortona, Phys. Rev. B, 46, 2008 (1992). https://doi.org/10.1103/PhysRevB.46.2008

Z.P. Chang, and G.R. Barsch, J. Phys. Chem. Solids, 32(1), 27 (1971). https://doi.org/10.1016/S0022-3697(71)80005-7

M. Ghafelehbashi, D.P. Dandekar, and A.L. Ruoff, J. Appl. Phys. 41(2), 652 (1970). https://doi.org/10.1063/1.1658728

G.R. Barsch, and H.E. Shull, Physica status solidi (b), 43(2), 637 (1971). https://doi.org/10.1002/pssb.2220430224

A. Asenbaum, O. Blaschko, and H.D. Hochheimer, Phys. Rev. B, 34(3), 1968 (1986). https://doi.org/10.1103/PhysRevB.34.1968

A.K. Sarkar, and S. Sengupta, Physica status solidi (b), 36(1), 359 (1969). https://doi.org/10.1002/pssb.19690360137

K. Teegarden, and G. Baldini, Phys. Rev. 155(3), 896 (1967). https://doi.org/10.1103/PhysRev.155.896

J.J. Hopfield, and J.M. Worlock, Phys. Rev. 137, A1455 (1965). https://doi.org/10.1103/PhysRev.137.A1455

J. Li, C.G. Duan, Z.Q. Gu, and D.S. Wang, Phys. Rev. B, 57(4), 2222 (1998). https://doi.org/10.1103/PhysRevB.57.2222

M. Bashi, H.R, Aliabad, A.A. Mowlavi, I. Ahmad, Solid State Nucl. Magn. Reson. 82, 10 (2017). https://doi.org/10.1016/j.ssnmr.2016.12.009

M.H. Norwood, and C.V Briscoe, Physical Review, 112(1), 45 (1958). https://doi.org/10.1103/PhysRev.112.45

P.W. Bridgman, Proc. Am. Acad. Arts Sci. 64, 305 (1929). http://nobelprize.org/nobel_prizes/physics/laureates/1946/bridgman-bio.html

C. Gahn, and A. Mersmann, Chem. Eng. Sci. 54(9), 1273 (1999). https://doi.org/10.1016/S0009-2509(98)00450-3

Y. Benkrima, D. Belfennache, R. Yekhlef, and A.M. Ghaleb, Chalcogenide Lett. 20, 609 (2023). https://doi.org/10.15251/CL.2023.208.609

Y. Achour, Y. Benkrima, I. Lefkaier, and D. Belfennache, J. Nano- Electron. Phys. 15(1), 01018 (2023) https://doi.org/10.21272/jnep.15(1).01018

Y. Benkrima, D. Belfennache, R. Yekhlef, M.E. Soudani, A. Souiga, and Y. Achour, East Eur. J. Phys. (2), 150 (2023). DOI:10.26565/2312-4334-2023-2-14

H.R. Djabri, R. Khatir, S. Louhibi-Fasla, I. Messaoudi, and H. Achour, Comput. Condens. Matter, 10, 15 (2017). https://doi.org/10.1016/j.cocom.2016.04.003

Y. Benkrima, A. Achouri, D. Belfennache, R. Yekhlef, and N. Hocine, East Eur. J. Phys. (2), 215 (2023). DOI:10.26565/2312-4334-2023-2-23

Y. Benkrima, S. Benhamida, and D. Belfennache, Dig. J. Nanomater. Bios. 18(1), 11 (2023) https://doi.org/10.15251/DJNB.2023.181.11

Y. Benkrima, M.E. Soudani, D. Belfennache, H. Bouguettaia, and A. Souigat, J. Ovonic. Res. 18(6), 797 (2022). https://doi.org/10.15251/JOR.2022.186.797

H.G. Drickamer, R.W. Lynch, R.L. Clendenen, and E.A. Perez-Albueene, Solid State Phys. 19, 135 (1967). https://doi.org/10.1016/S0081-1947(08)60529-9

N. Beloufa, Y. Cherchab, S. Louhibi-Fasla, S. Daoud, H. Rekab-Djabri, and A. Chahed, Comput. Condens. Matter. 30, e00642 (2022). https://doi.org/10.1016/j.cocom.2022.e00642

N. Rahman, M. Husain, W. Ullah, A. Azzouz-Rached, Y.M. Alawaideh, H. Albalawi, Z. Bayhan, et al., Inorg. Chem. Commun. 166, 112625 (2024). https://doi.org/10.1016/j.inoche.2024.112625

S. Daoud, P.K. Saini, and H. Rekab-Djabri, J. Nano- Electron. Phys. 12(6), 06008 (2020). https://doi.org/10.21272/jnep.12(6).06008

R. Yagoub, H.R. Djabri, S. Daoud, N. Beloufa, M. Belarbi, A. Haichour, C. Zegadi, and S.L. Fasla, Ukr. J. Phys. 66, 699 (2021). DOI: 10.15407/ujpe66.8.699

J. Yan, J. Zhao, J. Sheng, B. Wang, and J. Zhao, Mater. Today Commun. 41, 110966 (2024). https://doi.org/10.1016/j.mtcomm.2024.110966

K. Burke, Friends, The ABC of DFT, (Department of Chemistry, University of California, Irvine, CA 2007).

J.P. Perdew, Phys. Rev. B, 33(12), 8822 (1986). https://doi.org/10.1103/PhysRevB.33.8822

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

A.D. Becke, and E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006). https://doi.org/10.1063/1.2213970

R. Hill, Proc. Phys. Soc. A, 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, J. Chem. Phys. 120(15), 6898 (2004). https://doi.org/10.1063/1.1665298

A.D. Becke, and E.R. Johnson, J. Chem. Phys. 124(22), 221101 (2006). https://doi.org/10.1063/1.2213970

A.D. Becke, and M.R. Roussel, Phys. Rev. A, 39(8), 3761 (1989). https://doi.org/10.1103/PhysRevA.39.3761

F. Tran, and P. Blaha, Phys. Rev. Lett. 102(22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

Y. Guermit, K. Hocine, M. Drief, T. Lantri, H. Rekab-Djabri, A. Maizia, and N.E. Benkhettou, Opt. Quant. Electron. 56(4), 537 (2024). https://doi.org/10.1007/s11082-023-06056-1

F. Benguesmia, A. Benamrani, L. Boutahar, H. Rekab-Djabri, and S. Daoud, J. Phys. Chem. Res. 1(2), 25 (2022). https://doi.org/10.58452/jpcr.v1i2.24

J. Jiang, J. Chem. Phys. 138(13), 134115 (2013). https://doi.org/10.1063/1.4798706

O.K. Andersen, Phys. Rev. B, 12(8), 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

R. Jaradat, M. Abu-Jafar, I. Abdelraziq, S.B. Omran, D. Dahliah, and R. Khenata, Mater. Chem. Phys. 208, 132 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.037

P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59(2), 399 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

H. Ibach, and H. Lueth, Solid-state physics. An introduction to principles of materials science, (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-93804-04

S.H. Simon, Problems for Solid State Physics, (3rd Year Course 6) Hilary Term, (Oxford University, 2011).

M. Born, K. Huang, and M. Lax, Journal of Physics, 23(7), 474 (1955). https://doi.org/10.1119/1.1934059

Published
2025-09-08
Cited
How to Cite
Rekab-Djabri, H., Zaiou, S., Azzouz-Rached, A., Benamrani, A., Daoud, S., Belfennache, D., Yekhlef, R., & Beloufa, N. (2025). Structural, Electronic and Elastic Properties of Potassium Iodide, under Pressure: An Ab-Initio Analysis Study. East European Journal of Physics, (3), 298-308. https://doi.org/10.26565/2312-4334-2025-3-27