Numerical Simulation Study of The Increase in Electrical Efficiency of the CIGS-Based Solar Cell by SCAPS-1D

  • K. Madoui Laboratory of Applied Optics, Institute of optics and precision mechanics. Ferhat ABBAS Setif-1 University, Algeria
  • A. Ghechi Laboratory of Optoelectronics and components, Institute of optics and precision mechanics. Ferhat Abbas Setif-1 University, Algeria
  • S. Madoui Laboratory of Applied Biochemistry, University Ferhat Abbas Setif-1, Algeria
  • R. Yekhlef Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • D. Belfennache Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-4908-6058
  • S. Zaiou Laboratory for Studies of Surfaces and Interfaces of Solid Materials (LESIMS), University Setif-1, Setif, Algeria; Faculty of Natural Sciences and Life, Setif-1 University, Setif, Algeria
  • Mohamed A. Ali School of Biotechnology,Badr University in Cairo (BUC), Badr City, Cairo, Egypt https://orcid.org/0000-0002-7390-8592
Keywords: Density functional theory (DFT), Binding energies, Homo-lumo energy, Fragmentation energy, Magnetic moment

Abstract

Solar cells are currently the focus of a great deal of research. The aim is to reduce their cost price. To achieve this, we need to reduce the mass of the materials and increase the conversion efficiency of these solar cells. This has motivated research into the use of thin films such as a-Si, CdTe, CIGS. This increase in efficiency requires optimizing the performance of the photovoltaic parameters. In this modeling and simulation work, we use the SCAPS-1D software to study the effect of the recombination speed of the electrons and holes in the CIGS layer, the effect of the thickness of the layers and the effect of the gap energy of each layer of the material used for this solar cell on the short-circuit current Jsc, the open-circuit voltage Voc, the form factor FF and the electrical efficiency η of the CIGS cell for a Mo/p-CIGS/p-Si/In2S3/i-ZnO/Al-ZnO single-junction structure. In this study, we found that recombination speed affects the efficiency of the photovoltaic cell. The gap energy of the absorber layers influences the cell's efficiency, while the other layers (In2S3, ZnO, Al-ZnO) do not have a great influence on solar cell performance and increasing the thickness of the absorber layer has a major influence on efficiency, increasing it up to a certain limit. The thicknesses of the CIGS, p-Si, In2S3, i-ZnO and Al‑ZnO layers need to be in the order of 0.3µm, 0.8µm, 0.05µm, 0.07µm and 0.1µm respectively to achieve better efficiency (31.42%).

Downloads

Download data is not yet available.

References

P. Bórawski, L. Holden, and A. Bełdycka-Bórawska, Energy, 270, 126804 (2023). https://doi.org/10.1016/j.energy.2023.126804

H. Sadamura, N. Suzuki, C. Sotome, et al. Electrochemistry, 78(7), 594 (2010). https://doi.org/10.5796/electrochemistry.78.594

A. Jäger-Waldau, Energies, 13(4), 930 (2020). https://doi.org/10.3390/en13040930

A. Jäger-Waldau, PV Status Report, (Publications Office of the European Union, Luxembourg, 2019). https://doi.org/10.2760/326629, JRC118058

M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlopet, Progress in Photovoltaics: Research and Applications, 23, 1 (2015). https://doi.org/10.1002/pip.2573

D. Belfennache, D. Madi, R. Yekhlef, L. Toukal, N. Maouche, M.S. Akhtar, and S. Zahra, Semicond. Phys. Quantum. Electron. Optoelectron. 24(4), 378 (2021). https://doi.org/10.15407/spqeo24.04.378

D. Belfennache, N. Brihi, and D. Madi, in: Proceeding of the IEEE xplore, 8th (ICMIC) (2016), 7804164, (2017), pp. 497–502. https://doi.org/10.1109/ICMIC.2016.7804164

R. Ouldamer, D. Madi, and D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol. 591, edited by M. Hatti, (Springer, Cham.2023). pp. 700 705, https://doi.org/10.1007/978-3-031-21216-1_71

M. Zotti S. Mazzoleni, L.V. Mercaldo, M.D. Noce, M. Ferrara, P.D. Veneri, M. Diano, et al., Heliyon, 10(4), e26323 (2024). https://doi.org/10.1016/j.heliyon.2024.e26323

D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z

S.M. Govindharajulu, A.K. Jain, and M. Piraviperumal, J. Alloys Compd. 980, 173588 (2024). https://doi.org/10.1016/j.jallcom.2024.173588

J. Raval, B. Shah, D. Kumar, S.H. Chaki, and M.P. Deshpande, Chem. Eng. Sci. 287, 119728 (2024). ,https://doi.org/10.1016/j.ces.2024.119728

I. Repins, M. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi. Progress in Photovoltaics: Research and Applications, 16(3), 235 (2008). https://doi.org/10.1002/pip.822

J. Lindahl, U. Zimmermann, P. Szaniawski, T. Törndahl, A. Hultqvist, P. Salomé, C. Platzer-Björkman, et al., IEEE J. Photovolt. 3(3), 1100 (2013). https://doi.org/10.1109/JPHOTOV.2013.2256232

M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, and W. Wischmann, Sol. Energy Mater. Sol. Cells, 119, 51 (2013). https://doi.org/10.1016/j.solmat.2013.05.002

A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, et al., Nature Mater, 10, 857 (2011). https://doi.org/10.1038/nmat3122

E. Wallin, U. Malm, T. Jarmar, O. Lundberg, M. Edoff, L. Stolt, et al., Progress in Photovoltaics: Research and Applications, 20, 851 (2012). https://doi.org/10.1002/pip.2246

A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, et al., Progress in Photovoltaics: Research and Applications, 12, 93 (2004). https://doi.org/10.1002/pip.527

M. Kemell, M. Ritala, and M. Leskelä, Crit. Rev. Solid State Mater. Sci. 30, 1 (2005). https://doi.org/10.1080/10408430590918341

C.H. Fischer, M. Bär, T. Glatzel, I. Lauermann, and M.C. Lux-Steiner, Sol. Energy Mater. Sol. Cells, 90(10), 1471 (2006). https://doi.org/10.1016/j.solmat.2005.10.012

K.S. Ramaiah, and V.S. Raja, Sol. Energy Mater. Sol. Cells, 32, 1 (1994). https://doi.org/10.1016/0927-0248(94)90250-X

M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361-362, 527 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

K. Decock, S. Khelifi, and M. Burgelman, Thin Solid Films, 519(21), 7481 (2011). https://doi.org/10.1016/j.tsf.2010.12.039

M. Burgelman, and J. Marlein, Analysis of graded band gap solar cells with SCAPS, In: Proceedings of the 23rd European photovoltaic solar energy conference, (2008). pp. 2151-2156.

J. Verschraegen, and M. Burgelman, Thin Solid Films, 515(15), 6276 (2007). https://doi.org/10.1016/j.tsf.2006.12.049

S. Degrave, M. Burgelman, and P. Nollet, in: Proceedings of the 3rd world conference on photovoltaic energy conversion, (2003), pp. 487-490. http://hdl.handle.net/1854/LU-404099

A. Niemegeers, and M. Burgelman, in: Proceedings of the 25th IEEE photovoltaic specialists conference, 901e4 (1996). https://doi.org/10.1109/PVSC.1996.564274

R.N. Mohottige, and S.P.K. Vithanage, J. Photochem. Photobiol. A: Chem. 407. 113079 (2021). https://doi.org/10.1016/j.jphotochem.2020.113079

M. Mostefaoui, H. Mazan, S. Khelifi, A. Bouraiou, and R. Dabou, Energy Procedia, 74, 736 (2015). https://doi.org/10.1016/j.egypro.2015.07.809

K. Orgassa, H.W. Schock, and J.H. Werner, Thin Solid Films, 431–432, 387 (2003). https://doi.org/10.1016/S0040-6090(03)00257-8

M. Hashemi, Z, Saki, M. Dehghani, F. Tajabadi, S.M.B. Ghorashi, and N. Taghavinia, Sci. Rep. 12, 14715 (2022). https://doi.org/10.1038/s41598-022-18579-w

R.J. Matson, O. Jamjoum, A.D. Buonaquisti, P.E. Russell, L.L. Kazmerski, P. Sheldon, and R.K. Ahrenkiel, Solar cells, 11(3), 301 (1984). https://doi.org/10.1016/0379-6787(84)90019-X

N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, Sol. Energy Mater. Sol. Cells, 67(1-4), 209 (2001). https://doi.org/10.1016/S0927-0248(00)00283-X

M. Powalla, and B. Dimmler, Thin Solid Films, 361–362, 540 (2000). https://doi.org/10.1016/S0040-6090(99)00849-4

C.K.G. Kwok, H. Tangara, N. Masuko, et al., Sol. Energy Mater. Sol. Cells. 269, 112767 (2024). https://doi.org/10.1016/j.solmat.2024.112767

S. Mahdid, D. Belfennache, and D. Madi, et al., J. Ovonic. Res. 19(5), 535 (2023). https://doi.org/10.15251/JOR.2023.195.535

R. Ouldamer, D. Belfennache, D. Madi, et al., J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45

Published
2024-09-02
Cited
How to Cite
Madoui, K., Ghechi, A., Madoui, S., Yekhlef, R., Belfennache, D., Zaiou, S., & Ali, M. A. (2024). Numerical Simulation Study of The Increase in Electrical Efficiency of the CIGS-Based Solar Cell by SCAPS-1D. East European Journal of Physics, (3), 390-403. https://doi.org/10.26565/2312-4334-2024-3-48