Fast and Cheap Synthesis of CuO/ZnO Thin Films Made with The Spray Pyrolysis Technique

  • Y. Bellal Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-8280-9967
  • A. Bouhank Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
  • D. Belfennache Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria https://orcid.org/0000-0002-4908-6058
  • R. Yekhlef Research Center in Industrial Technologies CRTI, Cheraga, Algiers, Algeria
Keywords: Spray Pyrolysis, CuO/ZnO, Thin Films, Precursor, RAMAN, Photodegradation

Abstract

In this paper, CuO/ZnO nanocomposites thin films were elaborated with different combination ratio of precursors (copper chloride, zinc chloride) dissolved in distilled water using the spray pyrolysis method in order to study their physicochemical properties. Nanocomposites were elaborated as thin films deposited on the surface of ordinary glass at 550°C using a cheaper and fast technique. Optical, structural and morphological properties of the latter have been examined by UV-vis, X-ray diffraction (XRD), RAMAN, SEM/EDS and AFM. XRD peaks prove the attendance of the polycrystalline models of CuO and ZnO with preferential orientation. Raman shift spectrum confirms the attendance of CuO and ZnO nanocomposites. SEM/EDS and AFM support that there is same roughness on the surface of the ordinary glass RMS=106 nm, which is suitable for the mechanism of photodegradation. In the visible region, we notice a high absorbance and high optical band gaps (Egap= 4.07 eV) that is suitable for the photodegradation of undesirable substances.

Downloads

Download data is not yet available.

References

Z. Wang, J. Fan, Y. Zou, X. Fu, L. Shi, Y. Li, X. Ma, Opt. Commun. 577, 131425 (2025). https://doi.org/10.1016/j.optcom.2024.131425.

Y. Benkrima, D. Belfennache, R. Yekhlef, A. M. Ghaleb, Chalcogenide Lett. 20(8). 609-618 (2023). DOI:10.15251/CL.2023.208.609.

C. Cao, Y. He, Y. Liu, H. Huang, F. Zhang,Int. J. Prod. Econ.109496 (2024) https://doi.org/10.1016/j.ijpe.2024.109496.102829

R.S. Foumani, E. Fatehifar, and T. Rajaee, Results in Chemistry. 13, 101963 (2025), https://doi.org/10.1016/j.rechem.2024.101963

Y. Benkrima, A. Achouri, D. Belfennache, R. Yekhlef, and N. Hocine, East Eur. J. Phys. 2, 215 (2023), https://doi.org/10.26565/2312-4334-2023-2-23

T.G. Gindose, T.B. Atisme, G. Gebreslassie, A.B. Gebresilassie, and E.A. Zereffa, Materials Advances, 5(20), 8017 (2024). https://doi.org/10.1039/d4ma00357h

S. Mahdid, D. Belfennache, D. Madi, M. Samah, R. Yekhlef, and Y. Benkrima, J. Ovonic. Res. 19(5), 535 (2023). https://doi.org/10.15251/JOR.2023.195.535

D. Belfennache, D. Madi, R. Yekhlef, L. Toukal, N. Maouche, M.S. Akhtar, S. Zahra. Semicond. Phys. Quantum Electron. Optoelectron.. 24(4). 378-389 (2021). https://doi.org/10.15407/spqeo24.04.378

R. Papitha, V. Hadkar, N.K. Sishu, S. Arunagiri, S.M. Roopan, and C.I. Selvaraj, Ceramics International, 50(20), 39109 (2024). https://doi.org/10.1016/j.ceramint.2024.07.277

S. Zaiou, O. Beldjebli, D. Belfennache, M. Tayeb, F. Zenikheri, and A. Harabi, Digest J. Nanomater. Biostruct. 18(1), 69 (2023). https://doi.org/10.15251/DJNB.2023.181.69

A. Pandey, P. Yadav, A. Fahad, P. Kumar, and M.K. Singh, Ceramics International, 50(12), 21417 (2024). https://doi.org/10.1016/j.ceramint.2024.03.253

Z. Yin, Y. Zeng, D. Yang, Y. Jiao, J. Song, P. Hu, H. Fan, and F. Teng, Journal of Luminescence, 257, 119762 (2023) https://doi.org/10.1016/j.jlumin.2023.119762

R. Ouldamer, D. Madi, and D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. edited by M. Hatti, Lecture Notes in Networks and Systems, 591, 700 (2023). (Springer, Cham). https://doi.org/10.1007/978-3-031-21216-1_71

A. Gebretsadik, B. Kefale, C. Sori, D. Tsegaye, H.C.A. Murthy, and B. Abebe, RSC Advances. 14(41), 29763 (2024). https://doi.org/10.1039/d4ra05989a

S-M. Lam, J-C. Sin, W.W. Tong, H. Zeng, H. Li, L. Huang, H. Lin, and J-W. Lim, Chemosphere, 344, 140402 (2023). https://doi.org/10.1016/j.chemosphere.2023.140402

Chitralekha, I. Maurya, T. Gupta, S. Shankar, S. Gaurav, V. Tuli, J. Shah, and R.K. Kotnala, Mater. Chem. Phys. 291, 126690 (2022). https://doi.org/10.1016/j.matchemphys.2022.126690

R. Ouldamer, D. Belfennache, D. Madi, R. Yekhlef, S. Zaiou, and M.A. Ali, J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45

C.V. Niveditha, M.J. Fatima, and S. Sindhu, J. Electrochem. Soc. 163, H426 (2016). https://doi.org/10.1149/2.0971606jes

K.E. Brown, and K.S. Choi, Chem. Commun. 31, 3311 (2006). https://doi.org/10.1039/b604097g

Y. Bellal, A. Bouhank, H. Serrar, T. Tüken, and G. Sığırcık, MATEC Web Conf. 253, 03002 (2019). https://doi.org/10.1051/matecconf/201925303002

Y. Bellal, and A. Bouhank, Int. J. Nanosci. 20(03), 2150029 (2021). https://doi.org/10.1142/S0219581X21500290

X. Zhao, P. Wang, and B. Li, Chemical Communications, 46(36), 6768 (2010). https://doi.org/10.1039/c0cc01610a

N. Abraham, and S. Aseena, Materials Today: Proceedings, 43, 3698 (2021). https://doi.org/10.1016/j.matpr.2020.11.406

X. Guo, W. Ju, Z. Luo, B. Ruan, K. Wu, and P. Li, Int. J. Hydrogen Energy, 98, 1087 (2025). https://doi.org/10.1016/j.ijhydene.2024.12.117

P. Mahajan, A. Singh, and S. Arya, J. Alloys Compd. 814, 152292 (2020). https://doi.org/10.1016/j.jallcom.2019.152292

M.N. Najah, F.A. Rahmania, I. Cahyanti, M. Hesnaty, S.H. Alias, D. Hartanto, W.P. Utomo, et al., Afr. J. Chem. Eng. 51, 188 (2025). https://doi.org/10.1016/j.sajce.2024.11.009

A. Bouhank, and Y. Bellal, J. Nano Res. 69, 23 (2021). https://doi.org/10.4028/www.scientific.net/JNanoR.69.23

B.D. Cullity, in: Elements of X-ray Diffraction, (Addison and Wesley Publishing Company Inc. Reading, USA). pp. 32-106 (1978).

D. Saravanakkumar, H.A. Oualid, Y. Brahmi, A. Ayeshamariam, M. Karunanaithy, A.M. Saleem, K. Kaviyarasu, et al., OpenNano, 4, 100025 (2019). https://doi.org/10.1016/j.onano.2018.11.001

M. Alrefaee, U.P. Singh, and S.K. Das, J. Phys.: Conf. Ser. 1973(1), 012069 (2021). https://doi.org/10.1088/1742-6596/1973/1/012069

D.M. Jundale, P.B. Joshi, S. Sen, and V.B. Patil, J. Mater. Sci.: Mater. Electron. 23, 1492 (2012). https://doi.org/10.1007/s10854-011-0616-2

I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J. Colchero, J. Gómez-Herrero; and A.M. Baro, Rev. Sci. Instrum. 78(1), 013705 (2007). https://doi.org/10.1063/1.2432410

B. Şahin, and T. Kaya, Mater. Sci. Semicond. Process, 121, 105428 (2021). https://doi.org/10.1016/j.mssp.2020.105428

N.D. Dien, Adv. Mater. Sci. 4, 1 (2019). https://doi.org/10.15761/AMS.1000147

Published
2025-03-03
Cited
How to Cite
Bellal, Y., Bouhank, A., Belfennache, D., & Yekhlef, R. (2025). Fast and Cheap Synthesis of CuO/ZnO Thin Films Made with The Spray Pyrolysis Technique. East European Journal of Physics, (1), 170-176. https://doi.org/10.26565/2312-4334-2025-1-16