Characterıstıcs of Electrıcal Current Relaxatıon in Monocrystal TlInSe2

  • R.S. Madatov Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
  • A.I. Najafov Institute of Physics, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
  • M.A. Mammadov Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
  • A.S. Alekperov Azerbaijan State Pedagogical University, Baku, Azerbaijan; Western Caspian University, Baku, Azerbaijan
  • Z.I. Asadova Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan https://orcid.org/0009-0004-4295-3165
  • F.G. Asadov Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan; Azerbaijan State Oil and Industry University, Baku, Azerbaijan https://orcid.org/0009-0005-0258-485X
  • R.E. Huseynov Institute of Physics, Ministry of Science and Education of the Republic of Azerbaijan https://orcid.org/0000-0003-0636-3948
Keywords: Volt-ampere characteristics, Current relaxation, Current intensity, Electric field intensity, Charge carriers, Local energy levels

Abstract

This study investigates the volt-ampere characteristic of the TlInSe2 compound at various temperatures, as well as the relaxation of electric current across different voltages (corresponding to varying electric field intensities) at a temperature of 300 K. From the volt-ampere characteristic analysis, we calculated the concentration of free charge carriers, mobility, and trap concentration, yielding values of n0 = 5.45‧1018 сm-3, μ = 3.03∙10-3 сm2/V∙san, and Nₜ = 5.2 × 10¹⁰ cm⁻³, respectively. The dependence of electrical conductivity on temperature revealed local energy levels with activation energies of 0.2 eV and 0.53 eV in the TlInSe2 crystal. It was found that at low, constant voltages (where the electric field intensity E < 25 V/m), relaxation processes occur within the TlInSe2 compound, leading to a decrease in current due to charge accumulation. At higher voltages (where E > 25 V/m), an increase in current was observed. This increase was attributed to the injection of charge carriers from the contacts, the discharge of charges accumulated near the contact under the influence of the electric field, and the partial discharge of electron centres.

Downloads

Download data is not yet available.

References

H.J. Alasali, U. Rilwan, K.A. Mahmoud, T.A. Hanafy, and M.I. Sayyed, Nuclear Engineering and Technology, 56(10), 4050 (2024). https://doi.org/10.1016/j.net.2024.05.006

E.M. Mahrous, A.M. Al-Baradi, Kh.S. Shaaban, A. Ashour, Sh.A.M. Issa, and H.M.H. Zakaly, Optical Materials, 157(1), 116057 (2024). https://doi.org/10.1016/j.optmat.2024.116057

M. Papailiou, S. Dimitrova, E.S. Babayev, and H. Mavromichalaki, AIP Conference Proceedings, 1203, 748 (2010). https://doi.org/10.1063/1.3322548

E.S. Babayev, in: Proceedings of the 3rd International Conference on Recent Advances in Space Technologies, RAST 2007, 4284095 (Istanbul, Turkey, 2007). pp.760-767. https://doi.org/10.1109/RAST.2007.4284095

S.G. Asadullayeva, N.A. Ismayilova, and T.G. Naghiyev, Modern Physics Letters B, 37(34), 2350166 (2023). https://doi.org/10.1142/S021798492350166X

Sh.A.M. Issa, A.M. Hassan, M. Algethami, and H.M.H. Zakaly, Ceramics International, 50(20), 38281 (2024). https://doi.org/10.1016/j.ceramint.2024.07.192

Y.I. Aliyev, Y.G. Asadov, A.O. Dashdemirov, R.D. Aliyeva, T.G. Naghiyev, and S.H. Jabarov, International Journal of Modern Physics B, 33(23), 1950271 (2019). https://doi.org/10.1142/S0217979219502710

G.М. Аgamirzayeva, G.G. Huseynov, Y.I. Aliyev, T.T. Abdullayeva, and R.F. Novruzov, Advanced Physical Research, 5(1), 19 (2023). https://jomardpublishing.com/UploadFiles/Files/journals/APR/V5N1/Agamirzayeva_et_al.pdf

S.G. Asadullayeva, N.A. Ismayilova, M.A. Musayev, and I.I. Abbasov, International Journal of Modern Physics B, 38(01), 2450007 (2024). https://doi.org/10.1142/S0217979224500073

Y.I. Aliyev, N.A. Ismayilova, R.F. Novruzov, A.O. Dashdamirov, H.J. Huseynov, S.H. Jabarov, and A.A. Ayubov, Modern Physics Letters B, 33(21), 1950242 (2019). https://doi.org/10.1142/S0217984919502427

R.S. Madatov, A.S. Alekperov, F.N. Nurmammadova, N.A. Ismayilova, and S.H. Jabarov, East European Journal of Physics, (1), 322 (2024). https://doi.org/10.26565/2312-4334-2024-1-29

S.H. Jabarov, N.A. Ismayilova, D.P. Kozlenko, T.G. Mammadov, N.T. Mamedov, H.S. Orudzhev, S.E. Kichanov, et al., Solid State Sciences, 111, 106343 (2021). https://doi.org/10.1016/j.solidstatesciences.2020.106343

N.T. Mamedov, S.H. Jabarov, D.P. Kozlenko, N.A. Ismayilova, M.Yu. Seyidov, T.G. Mammadov, and N.T. Dang, International Journal of Modern Physics B, 33(15), 1950149 (2019). https://doi.org/10.1142/S0217979219501492

A.F. Qasrawi, F.G. Aljammal, N.M. Taleb, and N.M. Gasanly, Physica B: Condensed Matter, 406(14), 2740 (2011). https://doi.org/10.1016/j.physb.2011.04.018

R.S. Madatov, A.I. Nadzhafov, V.S. Mamedov, and M.A. Mamedov, Surface Engineering and Applied Electrochemistry, 46, 154 (2010). https://doi.org/10.3103/S1068375510020122

R.S. Madatov, A.I. Nadzhafov, T.B. Tagiev, M.R. Gazanfarov, and M.A. Mekhrabova, Physics of the Solid State, 53, 2205 (2011). https://doi.org/10.1134/S1063783411110151

R.S. Madatov, A.I. Najafov, Yu.M. Mustafayev, M.R. Gazanfarov, and I.M. Movsumova, Semiconductors, 49, 1166 (2015). https://doi.org/10.1134/S1063782615090195

M. Ishikawa, T. Nakayama, K. Wakita, Y.G. Shim, and N. Mamedov, Journal of Applied Physics, 123, 161575 (2018). https://doi.org/10.1063/1.5011337

N. Ismayilova, and S. Asadullayeva, Indian Journal of Physics, 98, 1103 (2024). https://doi.org/10.1007/s12648-023-02858-x

S.G. Asadullayeva, A.O. Dashdemirov, A.S. Alekperov, N.A. Ismayilova, A.A. Hadieva, A.N. Cafarova, and A.S. Abiyev, Advanced Physical Research, 5(1), 12 (2023). https://jomardpublishing.com/UploadFiles/Files/journals/APR/V5N1/Asadullayeva_et_al.pdf

T.G. Naghiyev, R.F. Babayeva, Y.I. Aliyev, European Physical Journal B, 97(6), 86 (2024). https://doi.org/10.1140/epjb/s10051-024-00731-2

A.K. Nabiyeva, S.H. Jabarov, N.A. Ismayilova, and H.J. Huseynov, Ferroelectrics Letters Section, 51(1-3), 9 (2024). https://doi.org/10.1080/07315171.2023.2300594

N. Iram, R. Sharma, J. Ahmed, R. Almeer, A. Kumar, and Z. Abbas, Journal of Physics and Chemistry of Solids, 196, 112368 (2025). https://doi.org/10.1016/j.jpcs.2024.112368

N.S. Ezra, I.S. Mustafa, M.I. Sayyed, K.K. Dakok, I.M. Fadhirul, T.H. Khazaalah, G.I. Efenji, et al., Optical Materials, 155, 115907 (2024). https://doi.org/10.1016/j.optmat.2024.115907

G.B. Ibragimov, R.Z. Ibaeva, A.S. Alekperov, and B.G. Ibragimov, Advanced Physical Research, 6(1), 56 https://doi.org/10.62476/apr61.62

H.F. Khalil, S.A.M. Issa, S.G. Elsharkawy, R.B. Malidarreh, S. Gad, A. Badawi, F. Fakhry, and H.M.H. Zakaly, Journal of Sol-Gel Science and Technology, 112, 898 (2024). https://doi.org/10.1007/s10971-024-06520-8

T.A. Darziyeva, E.S. Alekperov, S.H. Jabarov, M.N. Mirzayev, Integrated Ferroelectrics, 232(1), 127 (2023). https://doi.org/10.1080/10584587.2023.2173447

Published
2025-06-09
Cited
How to Cite
Madatov, R., Najafov, A., Mammadov, M., Alekperov, A., Asadova, Z., Asadov, F., & Huseynov, R. (2025). Characterıstıcs of Electrıcal Current Relaxatıon in Monocrystal TlInSe2. East European Journal of Physics, (2), 226-230. https://doi.org/10.26565/2312-4334-2025-2-25