Influence of Phthalic Acid on the Process of Dendrite Development in Low-Density Polyethylene During Electrical Breakdown

  • Sh.A. Zeynalov Azerbaijan Technical University, Baku, Azerbaijan https://orcid.org/0000-0002-0040-6057
  • H.N. Vezirov Institute of Physics, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
  • F.Sh. Kerimov Azerbaijan Technical University, Baku, Azerbaijan
  • S.I. Safarova Azerbaijan Technical University, Baku, Azerbaijan
  • K.J. Gulmamedov Azerbaijan Technical University, Baku, Azerbaijan
  • A.S. Alekperov Azerbaijan State Pedagogical University, Baku, Azerbaijan; Western Caspian University, Baku, Azerbaijan
Keywords: LDPE, Dendrites, Tension, Supramolecular structure, Phthalic acid

Abstract

The presented work presents the results of a study on the effect of small amounts of phthalic acid additives on dendrite formation in low-density polyethene (LDPE). Based on the results obtained, it is shown that the dendrite resistance of LDPE, as expected, increases with the introduction of 0.05 wt% phthalic acid. The established increase in dendrite resistance of LDPE with the introduction of phthalic acid can primarily be explained based on a decrease in inhomogeneities in the form of air pores as a result of accelerated structure formation and the emergence of a more homogeneous supramolecular structure. It was revealed that an increase in dendrite resistance correlates with an improvement in the dielectric characteristics of the composition. The influence of mechanical load on the development of dendrites in polymer dielectrics has been studied. As a result of studying the growth of dendrites in LDPE samples and its optimal composition subjected to unilateral stretching, it was found that under the influence of mechanical tensile stresses, the shape of the surface delimiting tree-like shoots changes, this surface is flattened in the direction of stretching. It has been shown that the rate of dendrite growth increases as mechanical tensile forces increase.

Downloads

Download data is not yet available.

References

Y.I. Alıyev, F.G. Asadov, T.M. Ilyaslı, A.O. Dashdemirov, R.E. Huseynov, and S.H. Jabarov, Ferroelectrics, 599, 78 (2022). https://doi.org/10.1080/00150193.2022.2113641

S.H. Jabarov, A.Kh. Nabiyeva, A.V. Trukhanov, S.V. Trukhanov, H.J. Huseynov, and Y.I. Aliyev, SOCAR Proceedings, 4, 171 (2023). http://dx.doi.org/10.5510/OGP20230400931

F.G. Agayev, S.H. Jabarov, G.Sh. Ayyubova, A.V. Trukhanov, S.V. Trukhanov, M.N. Mirzayev, T.G. Naghiyev, and N.T. Dang, Journal of Superconductivity and Novel Magnetism, 33, 2867 (2020). https://doi.org/10.1007/s10948-020-05544-9

T.M. Ilyasli, N.Sh. Mammadova, F.M. Sadigov, R.E. Huseynov, and Y.I. Aliyev, East European Journal of Physics, 2, 297 (2024). https://doi.org/10.26565/2312-4334-2024-2-33

Kh.N. Ahmadova, and S.H. Jabarov, Arabian Journal for Science and Engineering, 48, 8083 (2023). https://doi.org/10.1007/s13369-022-07449-2

R.J. Bashirov, N.E. Ismayilov, R.E. Huseynov, and N.M. Muradov, Advanced Physical Research, 6, 90 (2024). https://doi.org/10.62476/apr62.90

F.V. Hajiyeva, A. Chianese, A.A. Novruzova, and M.A. Ramazanov, Advanced Physical Research, 3(3), 129 (2021). http://jomardpublishing.com/UploadFiles/Files/journals/APR/V3N3/3Hajiyeva_et_al.pdf

E.M. Gojayev, Sh.V. Aliyeva, V.V. Salimova, A.Yu. Meshalkin, and S.H. Jabarov, Surface Engineering and Applied Electrochemistry, 56, 740 (2020). https://doi.org/10.3103/S106837552006006X

E.M. Gojayev, V.V. Salimova, and S.H. Jabarov, Modern Physics Letters B, 33, 1950412 (2019). https://doi.org/10.1142/S0217984919504128

E.M. Gojayev, Sh.V. Aliyeva, X.S. Khalilova, G.S. Jafarova, and S.H. Jabarov, International Journal of Modern Physics B, 33(26), 1950309 (2019). https://doi.org/10.1142/S0217979219503090

V.A. Volokin, O.S. Geffle, S.M. Lebedov, Journal of Applied Mechanics and Technical Physics, 50(1), 72 (2009). https://www.sibran.ru/upload/iblock/5e8/5e85ecc2a555187f73f9a583a632f068.pdf

O.S. Gelfle, S.M. Lebedev, and V.Y. Uschekkov, Journal of Physics D: Applied Physics, 37, 2318 (2004). http://dx.doi.org/10.1088/0022-3727/37/16/015

M.D. Noskov, A.S. Malinovsky, M. Zakk, and A.Y. Shvab, Journal of Technical Physics, 72(2), 121 (2002). https://journals.ioffe.ru/articles/viewPDF/40073

S.M. Lebedov, O.S. Geffle, V.A. Volokin, and P.V. Tarasov, in: Proc. of the 15th Intern. symp. on high voltage engug, (Ljubljana, 2007), p. 476.

M.M. Rezinkina, Journal of Technical Physics, 75(6), 85 (2005). https://journals.ioffe.ru/articles/viewPDF/8582

C. Poliska, Z. Gácsi, P. Barkóczy. Materials Science Forum, 508, 169-174 (2006). https://doi.org/10.4028/www.scientific.net/MSF.508.169

N. Shimizu, and C. Laurent, IEEE Transactions on Dielectrics and Electrical Insulation, 5(5), 113 (1998) https://doi.org/10.1109/94.729688

P.J. Sweeney, L.A. Dissado, and J.M. Cooper, Journal of Physics D: Applied Physics, 25(1), 113 (1992) https://doi.org/10.1088/0022-3727/25/1/016

Sh.A. Zeynalov, B.G. Garadzhaev, S.Kh. Khalilov, F.Sh. Kerimov, and A.M. Alekperov, Norwegian Journal of Development of the International Science, 86, 53 (2022). https://doi.org/10.5281/zenodo.6606629

E.M. Gojaev, A.A. Abdurragimov, F.Sh. Kerimov, and S.İ. Safarova, AzTU Journal of Scientific Proceedings of Fundamental Science, 2, 56 (2018).

O.S. Geffle, S.M. Lebedov, and Y. P. Pokholkov, in: IEEE International Conference on Solid Dielectrics, (Winchester, UK, 2007), pp. 142-145. http://dx.doi.org/10.1109/ICSD.2007.4290773

V.M. Biskov, and V.M.Kosenkov, Electronic Materials Processing, Chisinau, 49(4), 51 (2013). https://eom.ifa.md/ru/journal/shortview/899

M.M. Rezinkina, O.L. Rezinkin, and M.I. Nosenko, Journal of Technical Physics, 71(3), 69 (2001). https://repository.kpi.kharkov.ua/server/api/core/bitstreams/674b7ccf-5360-41e8-828a-ccf498a3ee38/content

L.A. Dissado, J.C. Fothergill, N. Wise, J. Cooper, J. Phys. D: Appl. Phys. 33(19), L109 (2000). https://doi.org/10.1088/0022-3727/33/19/103

A. Tallove, and S. Hagness, Computational Electrodynamics: The finite difference time domain method, (Artech House, Boston; London, 2000).

Published
2024-09-02
Cited
How to Cite
Zeynalov, S., Vezirov, H., Kerimov, F., Safarova, S., Gulmamedov, K., & Alekperov, A. (2024). Influence of Phthalic Acid on the Process of Dendrite Development in Low-Density Polyethylene During Electrical Breakdown. East European Journal of Physics, (3), 474-478. https://doi.org/10.26565/2312-4334-2024-3-57