Polyphenol Effect on the Interactions Between Functional Proteins and Amyloid Fibrils

  • U. Malovytsia Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • V. Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • M. Thomsen AAU Energy, Aalborg University, Esbjerg, Denmark https://orcid.org/0000-0001-6805-7247
  • K. Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-4738-4016
  • O. Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-2068-5823
  • G. Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0954-5053
Keywords: Amyloid fibrils, Functional proteins, Polyphenols, Molecular docking

Abstract

Among a wide variety of protein-protein interactions, the complexation of functionally important proteins with pathogenic protein aggregates (amyloid fibrils) attracts particular interest in view of its possible contribution to amyloid cytotoxicity. In the present study we investigated the interactions between the functional proteins (human serum albumin (HSA), hemoglobin (deoxyHb and oxyHb) and insulin Ins)) and amyloid fibrils from Abeta peptide, islet amyloid polypeptide (IAPP), insulin (InsF), apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II) with an accent on evaluating the possibility of modulating such interactions by polyphenolic compounds including quercetin, curcumin in keto and enol forms, gallic acid, salicylic acid, sesamin and resveratrol. The analysis of the molecular docking data showed that the binding affinities of amyloid fibrils to functional proteins vary in a wide range depending on the structural peculiarities of the examined systems. The most pronounced destabilizing effects of polyphenols on the complexes between the proteins in native and amyloid states were revealed for the systems HSA + QR / CRketo +ApoA-I, HSA +SES +IAPP, deoxyHb + SES / RES +InsF. Further experimental evaluation of these molecular docking predictions will create prerequisites for extending the range of polyphenol applications as anti-amyloid agents.

Downloads

Download data is not yet available.

References

S. Wang, R. Wu, J. Lu, Y. Jiang, T. Huang, and Y. Cai, Proteomics. 22, 2100190 (2022). https://doi.org/10.1002/pmic.202100190

L. Walport, J. Low, J. Matthews, and J. Mackay, Chem. Soc. Rev. 50, 12292 (2021). https://doi.org/10.1039/D1CS00548K

T. Berggård, S. Linse, and P. James, Proteomics 7, 2833 (2007). https://doi.org/10.1002/pmic.200700131

J. Brown, and M. Horrocks, Curr. Opin. Struct. Biol. 15, 441 (2005). https://doi.org/10.1016/j.sbi.2005.06.001

H. Lu, Q. Zhou, J. He, Z. Jiang, C. Peng, R. Tong, and J. Shi, Signal Transduct. Target. Ther. 5, 213 (2020). https://doi.org/10.1038/s41392-020-00315-3

J. Brown, and M. Horrocks, Semin. Cell Dev. Biol. 99, 65 (2020). https://doi.org/10.1016/j.semcdb.2018.05.006

B. Liu, H. Zhang,and X. Qin, Nanomaterials 15, 255 (2025). https://doi.org/10.3390/nano15040255

M. P. Jackson, and E. W. Hewitt, Essays Biochem. 60, 173 (2016). https://doi.org/10.1042/EBC20160005

K. F. Winklhofer, and C. Haass, Biochim. Biophys. Acta 1802, 29-44 (2010).

B. Uttara, A. V. Singh, P. Zamboni, R. T. Mahajan, Curr. Neuropharmacol. 7, 65 (2009). https://doi.org/10.2174/157015909787602823

U.K. Malovytsia, V.M. Trusova, M.H. Thomsen, G.P. Gorbenko, East Eur. J. Phys. (1), 367 (2025). https://doi.org/10.26565/2312-4334-2025-1-45

B. Bohrmann, I. Tjernberg, P. Kuner, S. Poli, B. Levet-Trafit, J. Näslund, R. Grayson, W. Huber, H. Döbeli, and C. Nordstedt, J. Biol. Chem. 274, 15990 (1999). https://doi.org/10.1074/jbc.274.23.15990

S. Han, J. Park, and I. Mook-Jung, Prog.Neurobiol. 137, 17 (2016). https://doi.org/10.1016/j.pneurobio.2015.12.004

H. Xie, and C. Guo, Front. Mol. Biosci. 7, 629520 (2021). https://doi.org/10.3389/fmolb.2020.629520

K. Jia, Y. Low, A. Venkatraman, J. Mehta, and K. Pervushin, J. Adv. Res. 36, 113 (2022). https://doi.org/10.1016/j.jare.2021.05.007

A. Ezra, I. Rabinovich-Nikitin, P. Rabinovich-Toidman, and B. Solomon, J. Alzheimers Dis. 50, 175 (2016). https://doi.org/10.3233/JAD-150694

M. Boada, O. López, J. Olazarán, L. Núñez, M. Pfeffer, M. Paricio, J. Lorites, G. Piñol-Ripoll, J. Gámez, F. Anaya, D. Kiprov, J. Lima, C. Grifols, M. Torres, M. Costa, J. Bozzo, Z. Szczepiorkowski, S. Hendrix, and A. Páez, Alzheimers. Dement. 16, 1412 (2020). https://doi.org/10.1002/alz.12137

C. Wang, F. Cheng, L. Xu, and L. Jia, RSC Adv. 6, 71165 (2016). https://doi.org/10.1039/c6ra14590f

M. Algamal, R. Ahmed, N. Jafari, B. Ahsan, J. Ortega, and G. Melacini, G. J. Biol. Chem. 292, 17158 (2017). https://doi.org/10.1074/jbc.M117.792853

D. Bode, H. Stanyon, T. Hirani, M. Baker, J. Nield, and J. Viles, J. Mol. Biol. 430, 919–934 (2018). https://doi.org/10.1016/j.jmb.2018.01.008

Z. Almeida, and R. Brito, Biomedicines 10, 3276 (2022). https://doi.org/10.3390/biomedicines10123276

E. Nachman, A. Wentink, K. Madiona, L. Bousset, T. Katsinelos, K. Allinson, H. Kampinga, W. McEwan, T. Jahn, R. Melki, A. Mogk, B. Bukau, and C. Nussbaum-Krammer, J. Biol. Chem. 295, 9676 (2020). https://doi.org/10.1074/jbc.RA120.013478

Y. Ali, H. Allen, L. Yu, D. Li-Kroeger, D. Bakhshizadehmahmoudi, A. Hatcher, C. McCabe, J. Xu, N. Bjorklund, G. Taglialatela, D. Bennett, P. De Jager, J. Shulman, H. Bellen, and H. Lu, PLOS Biol. 14, e1002472. (2016). https://doi.org/10.1371/journal.pbio.1002472

B. Kannaian, B. Sharma, M. Phillips, A. Chowdhury, M. Manimekalai, S. Adav, J. Ng, A. Kumar, S. Lim, Y. Mu, S. Sze, G. Grüber, and K. Pervushin, Sci.Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-48819-5

R. Costa, A. Gonçalves, M. Saraiva, and I. Cardoso, FEBS Lett. 582, 936–942 (2008). https://doi.org/10.1016/j.febslet.2008.02.034

C. Weng, and G. Yen, Canc. Treat. Rev. 38, 76 (2012), https://doi.org/10.1016/j.ctrv.2011.03.001

T. Ozdal, E. Capanoglu, and F. Altay, Food Res. Int. 51, 954 (2013). https://doi.org/10.1016/j.foodres.2013.02.009

Y. Yan, H. Tao, J. He, and S-Y. Huang, Nat. Protoc. 15, 1829 (2020). https://doi.org/10.1038/s41596-020-0312-x

Published
2025-12-08
Cited
How to Cite
Malovytsia, U., Trusova, V., Thomsen, M., Vus, K., Zhytniakivska, O., & Gorbenko, G. (2025). Polyphenol Effect on the Interactions Between Functional Proteins and Amyloid Fibrils. East European Journal of Physics, (4), 709-714. https://doi.org/10.26565/2312-4334-2025-4-77

Most read articles by the same author(s)

1 2 > >>