Modulating Effects of Polyphenols on The Interactions Between Functional Proteins and Amyloid Fibrils

Keywords: Amyloid fibrils, Functional proteins, Polyphenols, Differential absorption spectroscopy, Fluorescence

Abstract

The present study was focused on the investigation of the binary and ternary systems containing the functional proteins, polyphenols and amyloid fibrils using the differential absorption spectroscopy, intrinsic protein fluorescence and fluorescent probe techniques. The group of polyphenols (PF) included the representatives of four different classes: flavonoid quercetin (QR), phenolic acid (salicylic acid, SA), curcuminoid curcumin (CR) and tannin gallic acid (GA). The functionally important proteins were represented by hemoglobin (Hb), cytochrome c (Ct) and serum albumin (BSA). The amyloid fibrils were prepared from the N-terminal (1-83) fragment of apolipoprotein A-I with amyloidogenic mutation G26R (ApoA-IF). It was demonstrated that the spectral markers such as the position and intensity of the bands in differential absorption spectra, fluorescence intensity and emission maxima of the intrinsic (Trp) and extrinsic (TDV) fluorophores can be regarded as sensitive indicators of the protein structural modifications induced by amyloid fibrils and polyphenols. The observed changes in the Trp and TDV fluorescence were interpreted in terms of several processes: i) PF-induced conformational changes of the protein molecules accompanied by the alterations in microenvironment of Trp residues; ii) competition between PF and TDV for the protein binding sites; iii) non-resonance quenching of Trp or TDV fluorescence by PF; iv) resonance quenching (Forster resonance energy transfer) between Trp or TDV and PF. Taken together, the results obtained suggest that polyphenolic compounds can modulate the interaсtions between functional proteins and amyloid fibrils and can be considered as perspective agents for reducing the amyloid toxicity.

Downloads

References

G.J. Cooper, A.C. Willis, A. Clark, R.C. Turner, R.B. Sim, K.B. Reid, Proc. Natl. Acad. Sci. USA 84, 8628 (1987). https://www.ncbi.nlm.nih.gov/pubmed/3317417

A.P. Ano Bom, L.P. Rangel, D.C. Costa, G.A. de Oliveira, D. Sanches, C.A. Braga, L.M. Gava, et al., J. Biol. Chem. 287, 28152 (2012). http://dx.doi.org/10.1074/jbc.M112.340638

M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, M. Goedert, Nature 388, 839-840 (1997). https://doi.org/10.1038/42166

F. J. Bauerlein, I. Saha, A. Mishra, M. Kalemanov, A. Martínez-Sánchez, R. Klein, I. Dudanova, M. S. Hipp, F. U. Hartl, W. Baumeister, R. Fernández-Busnadiego, Cell 171, 179 (2017). https://doi.org/10.1016/j.cell.2017.08.009

H. Olzscha, S. M. Schermann, A. C. Woerner, S. Pinkert, M. H.Hecht, G. G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl, F. U. Hartl, R. Martin Vabulas, Cell 144, 67 (2011). https://doi.org/10.1016/j.cell.2010.11.050

S. C. Goodchild, T. Sheynis, R. Thompson, K. W. Tipping, W. F. Xue, N. A. Ranson, P. A. Beales, E. W. Hewitt, S. E. Radford, PLOS One 9, e104492 (2014). https://doi.org/10.1371/journal.pone.0104492

M. P. Jackson, E. W. Hewitt, Essays Biochem. 60, 173 (2016). https://doi.org/10.1042/EBC20160005

K. F. Winklhofer, C. Haass, Biochim. Biophys. Acta 1802, 29 (2010). https://doi.org/10.1016/j.bbadis.2009.08.013

B. Uttara, A.V. Singh, P. Zamboni, R.T. Mahajan, Curr. Neuropharmacol. 7, 65 (2009). https://doi.org/10.2174/157015909787602823

H. Xie, C. Guo, Front. Mol. Biosci. 7, 629520 (2021). https://doi.org/10.3389/fmolb.2020.629520

S. Morikawa, N. Kaneko, C. Okumura, H. Taguchi, M. Kurata, T. Yamamoto, H. Osawa, A. Nakanishi, T. Zako, J. Masumoto, Int. J. Immunopathol. Pharmacol. 32, 2058738 (2018). https://doi.org/10.1177/2058738418788749

A. Nakanishi, N. Kaneko, H. Takeda, T. Sawasaki, S. Morikawa, W. Zhou, M. Kurata, T. Yamamoto, S. M. F. Akbar, T. Zako, J. Masumoto, Inflamm. Regen. 38, 27 (2018). https://doi.org/10.1186/s41232-018-0085-6

W. Mori, N. Kaneko, A. Nakanishi, T. Zako, and J. Masumoto, Int. J. Immunopathol. Pharmacol. 35, 1–7 (2021). https://doi.org/10.1177/20587384211038357

N. Wu, T. Liu, M. Tian, C. Liu, S. Ma, H. Cao, and J. Qi, Mol. Med. Rep. 29, 24 (2024). https://doi.org/10.3892/mmr.2023.13147

M.H. Ahmed, M. S. Ghatge, M. K. Safo, Subcellular Biochemistry, 94. (2020). https://doi.org/10.1007/978-3-030-41769-7_14

Y.L. Ow, D. Green, Z. Hao, and T.W. Mak, Nat. Rev. Mol. Cell. Biol. 9, 532 (2008). https://doi.org/10.1038/nrm2434

A. Rana, M. Samtiya, T. Dhewa, V. Mishra, and R.E. Aluko, J. Food Biochem. 46, e14264 (2022). https://doi.org/10.1111/jfbc.14264

G. Zazeri, A.P.R. Povinelli, N. M. Pavan, D.R. de Carvalho, C.L. Cardoso, V.F. Ximenes, J. Mol. Struct. 1244, 130995 (2021). https://doi.org/10.1016/j.molstruc.2021.130995

S. Chaudhuri, S. Chakraborty, P. K. Sengupta, Biophys. Chem. 154, 26 (2011). https://doi.org/10.1016/j.bpc.2010.12.003

A. Papadopoulou, R.J. Green, R.A. Frazier, J. Agric. Food Chem. 53, 158 (2005). https://doi.org/10.1021/jf048693g

Published
2025-03-03
Cited
How to Cite
Malovytsia, U., Trusova, V., Thomsen, M., & Gorbenko, G. (2025). Modulating Effects of Polyphenols on The Interactions Between Functional Proteins and Amyloid Fibrils. East European Journal of Physics, (1), 367-375. https://doi.org/10.26565/2312-4334-2025-1-45

Most read articles by the same author(s)