Computational Study of Drug Delivery Systems with Radionuclide and Fluorescence Imaging Modalities. II. Doxorubicin Delivery Systems Based on Albumin and Transferrin

  • V. Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • U. Malovytsia Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • P. Kuznietsov O.I. Akhiezer Department for Nuclear Physics and High Energy Physics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-8477-1395
  • I. Karnaukhov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • A. Zelinsky National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-4110-8523
  • B. Borts National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1492-4066
  • I. Ushakov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • L. Sidenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
  • G. Gorbenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-0954-5053
Keywords: Drug delivery nanosystems, Human serum albumin, Transferrin, Doxorubicin, Technetium complexes, Fluorescent dyes, Molecular docking

Abstract

This study explores the development of advanced protein-based drug delivery systems for doxorubicin (DOX), an anticancer agent, incorporating both radionuclide (technetium-99m complexes) and fluorescence (Methylene Blue (MB), Indocyanine Green (IG), cyanine AK7-5 and squaraine SQ1) imaging modalities. Building upon previous research on albumin-based carriers, this work expands the scope by introducing transferrin (TRF) as a complementary protein component to create a more sophisticated and targeted delivery platform. Molecular docking technique was employed to design and characterize the multimodal delivery systems that incorporate radiopharmaceuticals and near-infrared fluorescent dyes. The results demonstrate that technetium-99m-based radiopharmaceuticals are capable of strong noncovalent binding to human serum albumin (HSA) and its complexes with transferrin. A comprehensive analysis of docking scores and interacting amino acid residues reveals that HSA-TRF-TcHyn/TcMEB/TcDIS-DOX-IG/SQ1 systems show the highest potential for experimental testing and further development. These findings support the potential of HSA-TRF complexes as nanocarriers with dual imaging capabilities for DOX delivery, offering an approach to enhance therapeutic efficacy while reducing systemic toxicity in anticancer treatment.

Downloads

References

C. Ferraro, M. Dattilo, F. Patitucci, S. Prete, G. Scopelliti, O. Parisi, and F. Puoci, Pharmaceutics. 16, 1172 (2024). https://doi.org/10.3390/pharmaceutics16091172

S. Hong, D. Choi, H. Kim, C. Park, W. Lee, and H. Park, Pharmaceutics. 12, 604 (2020). https://doi.org/10.3390/pharmaceutics12070604

A. Gorantla, J. Hall, A. Troidle, and J. Janjic, Micromachines 15, 533 (2024). https://doi.org/10.3390/mi15040533

M. Larsen, M. Kuhlmann, M. Hvam, and K. Howard, Mol. Cell Ther. 4, 3 (2016). https://doi.org/10.1186/s40591-016-0048-8

V. Trusova, U. Tarabara, I. Karnaukhov, A. Zelinsky, B. Borts, I. Ushakov, L. Sidenko, and G. Gorbenko, East Eur. J. Phys. (4), 447 (2024). https://doi.org/10.26565/2312-4334-2024-4-54

M. Puccetti, M. Pariano, A. Schoubben, S. Giovagnoli, and M. Ricci, Pharmacol Res. 201, 107086 (2024). https://doi.org/10.1016/j.phrs.2024.107086

N. Qu, K. Song, Y. Ji, M. Liu, L. Chen, R. Lee, and L. Teng, Int. J. Nanomedicine. 19, 6945 (2024). https://doi.org/10.2147/IJN.S467876

H. Choudhury, M. Pandey, P. Chin, Y. Phang, J. Cheah, S. Ooi, K. Mak, et al., Drug Deliv Transl Res. 8, 1545 (2018). https://doi.org/10.1007/s13346-018-0552-2

M. Kciuk, A. Gielecinska, S. Mujwar, D. Kołat, Z. Kałuzinska-Kołat, I. Celik, and R. Kontek, Cells. 12, 659 (2023). https://doi.org/10.3390/cells12040659

M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, and M. Schroeder, Nucl. Acids Res. 49, W530-W534 (2021). https://doi.org/10.1093/nar/gkab294

Published
2025-03-03
Cited
How to Cite
Trusova, V., Malovytsia, U., Kuznietsov, P., Karnaukhov, I., Zelinsky, A., Borts, B., Ushakov, I., Sidenko, L., & Gorbenko, G. (2025). Computational Study of Drug Delivery Systems with Radionuclide and Fluorescence Imaging Modalities. II. Doxorubicin Delivery Systems Based on Albumin and Transferrin. East European Journal of Physics, (1), 376-382. https://doi.org/10.26565/2312-4334-2025-1-46

Most read articles by the same author(s)