Numerical Study of 25.459% Alloyed Inorganic Lead-Free Perovskite CsSnGeI3-Based Solar Cell by Device Simulation

  • Muhammed O. Abdulmalik Department of Physics, Confluence University of Science and Technology, Osara, Kogi State, Nigeria https://orcid.org/0000-0002-3250-7864
  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeri https://orcid.org/0000-0001-5109-4690
  • Rita C. Obasi Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
  • Philibus M. Gyuk Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Francis U. Salifu Department of Physics, Confluence University of Science and Technology, Osara, Kogi State, Nigeria https://orcid.org/0000-0001-9015-2347
  • Suleiman Magaji Department of Electronics and Communications Engineering, Nigerian Defence Academy, Kaduna, Nigeria
  • Anselem C. Egbugha Operations Unit, Starsight Energy, Nigeria
  • Daniel Thomas Department of Physics, Kaduna State University, Kaduna, Nigeria
Keywords: Perovskite solar cells, SCAPS–1D, CsSnGeI3, hole transport material, electron transport material

Abstract

The toxic lead component as well as the expensive and less stable spiro-OMeTAD in perovskite solar cells (PSCs) pose a great deal of hindrance to their commercial viability. Herein, a computational approach towards modeling and simulation of all inorganic cesium tin-germanium triiodide (CsSnGeI3) based perovskite solar cell was proposed and implemented using solar cell capacitance simulator (SCAPS–1D) tool. Aluminium doped zinc oxide (ZnO:Al) and Copper Iodide (CuI) were used as electron and hole transport layers (ETL and HTL) respectively. The initial device without any optimization gave a power conversion efficiency (PCE) of 24.826%, fill factor (FF) of 86.336%, short circuit current density (Jsc) of 26.174 mA/cm2 and open circuit voltage (Voc) of 1.099 V. On varying the aforementioned parameters individually while keeping others constant, the optimal values are 1000 nm for absorber thickness, 1014 cm-3 for absorber layer defect density, 50 nm for ETL thickness, 1017 cm-3 for ETL doping concentration and 260 K for temperature. Simulating with these optimized values results to PCE of 25.459%, Voc of 1.145 V, Jsc of 25.241 mA/cm2, and a FF of 88.060%. These results indicate that the CsSnGeI3 is a viable alternative absorbing layer for usage in the design of a high PCE perovskite solar cell device.

Downloads

Download data is not yet available.

References

S. Ameen, M.A. Rub, S.A. Kosa, K.A. Alamry, M.S. Akhtar, H.S. Shin, H.K. Seo, A.M. Asiri, and M.K. Nazeeruddin. ChemSusChem, 9, 10 (2016). https://doi.org/10.1002/cssc.201501228

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of American Chemical Society, 131, 6050 (2009). https://doi.org/10.1021/ja809598r

M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nature Photonics, 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134

Z. Qu, F. Ma, Y. Zhao, X. Chu, S. Yu, and J. You, Chinese Physics Letters, 38, 107801 (2021). https://doi.org/10.1088/0256-307X/38/10/107801

B. Ai, Z. Fan, and Z.J. Wong, Microsystems & Nanoengineering, 8, 5 (2022). https://doi.org/10.1038/s41378-021-00334-2

Z.N. Jahanbakhshi, Z.M. Borhani, and M.R. Nateghi, Thin Solid Films, 671, 139 (2019). https://doi.org/10.1016/j.tsf.2018.12.029

E. Danladi, M. Kashif, A. Ichoja, and B.B. Ayiya, Transactions of Tianjin University, 28(5), (2022). https://doi.org/10.1007/s12209-022-00343-w

G. Pindolia, S. M. Shinde, and P.K. Jha, Solar Energy, 236, 802 (2022). https://doi.org/10.1016/j.solener.2022.03.053

W. Ke, and M.G. Kanatzidis, Nature Communications, 10, 965 (2019). https://doi.org/10.1038/s41467-019-08918-3

N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Energy & Environmental Science, 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K

M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, and T. Tesfamichael, Scientific Reports, 7, 14025 (2017). https://doi.org/10.1038/s41598-017-13172-y

D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, and N. Mathews, Journal of Physical Chemistry C, 119, 1763–1767 (2015). https://doi.org/10.1021/jp5126624

M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, and N. Mathews, Advanced Materials, 26, 7122–7127 (2014). https://doi.org/10.1002/adma.201401991

B. Wu, Y. Zhou, G. Xing, Q. Xu, H.F. Garces, A. Solanki, T.W. Goh, N.P. Padture, and T.C. Sum, Advanced Functional Materials, 27, 1604818 (2017). https://doi.org/10.1002/adfm.201604818

H. Wei, P. Qiu, Y.E. Li, Y. He, M. Peng, X. Zheng, and X. Liu, Ceramics International, 48(5), 5876 (2021). https://doi.org/10.1016/j.ceramint.2021.11.184

M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, and N.P. Padture, Nature Communications, 10, 16 (2019). https://doi.org/10.1038/s41467-018-07951-y

M.G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, and X.C. Zeng, Joule, 2, 1231 (2018). https://doi.org/10.1016/j.joule.2018.04.026

T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, and H.J. Snaith, Advanced Energy Materials, 5, 1500963 (2015). https://doi.org/10.1002/aenm.201500963

O.A. Muhammed, E. Danladi, P.H. Boduku, J. Tasiu, M.S. Ahmad, and N. Usman, East European Journal of Physics, 2, 146 (2021). https://doi.org/10.26565/2312-4334-2021-2-12

E. Danladi, M.Y. Onimisi, S. Garba, R.U. Ugbe, J.A. Owolabi, O.O. Ige, G.J. Ibeh, and A.O. Muhammed, Journal of the Nigerian Society of Physical Sciences, 1, 72 (2019). https://doi.org/10.46481/jnsps.2019.13

A. Tara, V. Bharti, S. Sharma, and R. Gupta, Optical Materials, 128, 112403 (2022). https://doi.org/10.1016/j.optmat.2022.112403

H. Pan, X. Zhao, X. Gong, H. Li, N.H. Ladi, X.L. Zhang, W. Huang, S. Ahmad, L. Ding, Y. Shen, M. Wang, and Y. Fu, Materials Horizons, 7, 2276 (2020). https://doi.org/10.1039/D0MH00586J

N.S.N. M. Alias, F. Arith, A.N. Mustafa, M.M. Ismail, N.F. Azmi, and M.S. Saidon, Journal of Engineering and Technological Sciences, 54(4), 220409 (2022). https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.9

M.F.M. Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, A.R.B.M. Yusoff, J. Jang, and M.A.M. Teridi, Journal of Materials Chemistry C, 6, 682 (2018). https://doi.org/10.1039/C7TC04649A

H. Sabbah, Materials, 15, 3229 (2022). https://doi.org/10.3390/ma15093229

N. Singh, A. Agarwal, and M. Agarwal, Superlattices and Microstructures, 149, 106750 (2021). https://doi.org/10.1016/j.spmi.2020.106750

S.M. Seyed-Talebi, and J. Beheshtian, International Journal of Energy and Power Engineering, 15(6), 252 (2021).

K. Chakraborty, M.G. Choudhury, and S. Paul, Solar Energy, 194, 886 (2019). https://doi.org/10.1016/j.solener.2019.11.005

F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, and M.G. Kanatzidis, Nature Photonics, 8(6), 489 (2014). https://doi.org/10.1038/nphoton.2014.82

W. Ning, F. Wang, B. Wu, J. Lu, Z. Yan, X. Liu, Y. Tao, J.M. Liu, W. Huang, M. Fahlman, and L. Hultman, Advanced Materials, 30(20), 1706246 (2018). http://dx.doi.org/10.1002/adma.201706246

S.Z. Haider, H. Anwar, and M. Wang, Semiconductor Science and Technology, 33(3), 035001 (2018). https://doi.org/10.1088/1361-6641/aaa596

C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Advanced Materials, 31(52), 1902762 (2019). http://dx.doi.org/10.1002/adma.201902762

M.I. Hossain, F.H. Alharbi, and N. Tabet, Solar Energy, 120, 370 (2015). https://doi.org/10.1016/j.solener.2015.07.040

C.S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, (PHI Learning Pvt. Ltd., New Delhi, 2015).

F. Anwar, R. Mahbub, S.S. Satter, and S.M. Ullah, International Journal of Photoenergy, Article ID 9846310, (2017). https://doi.org/10.1155/2017/9846310

J.P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, Advanced Materials, 28(5031), 7 (2016). https://doi.org/10.1002/adma.201600624

A. Mahmood, T. Munir, M. Fakhar-e-Alam, M. Atif, K. Shazad, K.S. Alimgeer, T.G. Nguyen H. Ahmad, and S. Ahmad, Journal of King Saud University-Science, 34(2), 101796, (2022). https://doi.org/10.1016/j.jksus.2021.101796

E. Danladi, M. Kashif, T.O. Daniel, C.U. Achem, M. Alpha, and M. Gyan, East European Journal of Physics, 3, 19 (2022). https://doi.org/10.26565/2312-4334-2022-3-03

Citations

SCAPS-1D simulation of a high-efficiency quantum dot solar cell using Sb2Se3 as an absorber layer
Ikyumbur T.J., Gbaorun F., McAsule A.A., Aper T.M., Akiiga N.S., Gundu A.A. & Shiada M.S. (2024) Next Research
Crossref


Talal Tanvir Aftab, Sadh Maheraf Hossain, Shohan Md. Eftekar Hossain, Siam Neamul Islam, Datta Apon Kumar & Suny Md Bijoy (2024)
Crossref

Modeling and simulation of > 19% highly efficient PbS colloidal quantum dot solar cell: A step towards unleashing the prospect of quantum dot absorber
Danladi Eli, Kashif Muhammad, Ouladsmane Mohamed, Hossain Ismail, Egbugha Anselem C., Alao Joseph O., Achem Christopher U., Tasie Nicholas N., Aremo Oluwatosin S. & Umar Ahmed M. (2023) Optik
Crossref

Modeling and Simulation of MAPbI3-Based Solar Cells with SnS2 as the Electron Transport Layer (ETL) and MoS2 as the Hole Transport Layer (HTL)
Li Min, Guo Shuai, Zhao Xiaoyu, Quan Sufeng, Wang Xuefeng, Wu Mengxuan, Liu Ruibin & Weller Dieter (2024) ACS Applied Electronic Materials
Crossref

Unraveling high-efficiency lead-free perovskite solar cells using a CsSnGeI3/CsGeI3 dual absorber and a Cu2O HTL
Rahman Md. Ferdous, Rahman Mahabur, Hossain Md. Faruk, Islam Md. Rezwanul, Islam Sahjahan, Ria Dipika Das, Benami Abdellah, Irfan Ahmad & Badi Nacer (2025) Scientific Reports
Crossref

Unraveling a Novel CsSnI3 and CsSnGeI3 Double Absorber Perovskite Solar Cell
Rahman Md. Ferdous, Akter Rihan, Hossain Md. Faruk, Badi Nacer, Irfan Ahmad & Balasingam Suresh Kannan (2025) International Journal of Energy Research
Crossref

Enhancing ZnO/Si Heterojunction Solar Cells: A Combined Experimental And Simulation Approach
Yusupov Fakhriddin T., Rakhmonov Tokhirbek I., Akhmadjonov Mekhriddin F., Madrahimov Muminjon M. & Abdullayev Sherzod Sh. (2024) East European Journal of Physics
Crossref

All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
Zhang Xiang, Zhang Dan, Wang Zaiwei, Zhao Yixin & Chen Hao (2025) Advanced Materials
Crossref

Published
2022-12-06
Cited
How to Cite
Abdulmalik, M. O., Danladi, E., Obasi, R. C., Gyuk, P. M., Salifu, F. U., Magaji, S., Egbugha, A. C., & Thomas, D. (2022). Numerical Study of 25.459% Alloyed Inorganic Lead-Free Perovskite CsSnGeI3-Based Solar Cell by Device Simulation. East European Journal of Physics, (4), 125-135. https://doi.org/10.26565/2312-4334-2022-4-12

Most read articles by the same author(s)