Структура і функції ламінів: норма і патологія

  • А. С. Забірник
  • А. О. Костарєва
  • А. Б. Малашичева
  • О. А. Омельченко
  • Є. Е. Перський
Ключові слова: ламіни; ламінопатії; диференціювання; МСК; LMNA

Анотація

Ламіни – це білки, що належать до класу проміжних філаментів і формують «ядерний цитоскелет» – ламіну. В огляді наведені сучасні уявлення про структуру та функції ламінів в нормі та патології. Найбільшу увагу приділено ламіну А, як більш важливому з точки зору розвитку патологій і різноманітності функцій. Особливе місце надано молекулярним механізмам патологій, які виникають в результаті мутацій в генах ламінових білків, а також ролі ламнів у функціонуванні та диференціюванні стовбурових клітин.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Attur M., Ben A.-Artzi, Yang Q. et al. Perturbation of nuclear lamin A causes cell death in chondrocytes // Arthritis Rheum. – 2012. – Vol.64 (6). – P. 1940–1949.

Benavente R., Krohne G. Involvement of nuclear lamins in postmitotic reorganization of chromatin as demonstrated by microinjection of lamin antibodies // J. Cell Biol. – 1986. – Vol.103. – P. 1847–1854.

Benedetti S., Menditto I., Degano M. et al. Phenotypic clustering of lamin A/C mutations in neuromuscular patients // Neurology. – 2007. – Vol.69. – P. 1285–1292.

Bonne G., Di Barletta M.R., Varnous S. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy // Nat Genet. – 1999. – Vol.21. – P. 285–288.

Borrego-Pinto J., Jegou T., Osorio D. et al. Samp1 is a component of TAN lines and is required for nuclear movement // J. Cell Sci. – 2012. – Vol.125 (5). – P. 1099–1105.

Brodsky G.L., Muntoni F., Miocic S. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement // Circulation. – 2000. – Vol.101. – P. 473–476.

Broers J.L., Machiels B.M., Kuijpers H.J. et al. A- and B-type lamins are differentially expressed in normal human tissues // Histochem. Cell Biol. – 1997. – Vol.107 (6). – P. 505–517.

Bruston F., Delbarre E., Ostlund C. et al. Loss of a DNA binding site within the tail of prelamin A/Contributes to altered heterochromatin anchorage by progerin // FEBS Lett. – 2010. – Vol.584 (14). – P. 2999–3004.

Candelario J., Sudhakar S., Navarro S. et al. Perturbation of wild-type lamin A metabolism results in a progeroid phenotype // Aging Cell. – 2008. – Vol.7. – P. 355–367.

Cao H., Hegele R.A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy // Hum. Mol. Genet. – 2000. – Vol.9. – P. 109–112.

Cao K., Capell B.C., Erdos M.R. et al. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells // Proc. Natl. Acad. Sci. – 2007. – Vol.104. – P. 4949–4954.

Cattin M.E., Bertrand A.T., Schlossarek S. et al. Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity // Hum. Mol. Genet. – 2013. – Vol.22. – P. 3152–3164.

Coffinier C., Chang S., Nobumori C. et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency // PNAS. – 2010. – Vol.107. – P. 5076–5081.

Constantinescu D., Gray H.L., Sammak P.J. et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation // Stem Cells. – 2006. – Vol.24. – P. 177–185.

Corrigan D.P., Kuszczak D., Rusinol A.E. et al. Prelamin A endo-proteolytic processing in vitro by recombinant Zmpste24 // Biochem. J. – 2005. – Vol.387. – P. 129–138.

Crisp M., Liu Q., Roux K. et al. Coupling of the nucleus and cytoplasm: Role of the LINC complex // J. Cell. Biol. – 2006. – Vol.172. – P. 41–53.

De Sandre-Giovannoli A., Bernard R., Cau P. et al. Lamin a truncation in Hutchinson-Gilford progeria // Science. – 2003. – Vol.300. – P.2055.

Dechat T., Adam S., Goldman R. Lamins and chromatin: When structure meets function // Nuclear Adv. Enzyme Regul. – 2008. – Vol.49. – P. 157–166.

Delbarre E., Tramier M., Coppey-Moisan M. et al. The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers // Hum. Mol. Genet. – 2006. – Vol.15. – P. 1113–1122.

Dhe-Paganon S., Werner E.D., Chi Y.I., Shoelson S.E. Structure of the globular tail of nuclear lamin // J. Biol. Chem. – 2002. – Vol.277. – P. 17381–17384.

di Masi A., D'Apice M., Ricordy R. et al. The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation // Cell Cycle. – 2008. – Vol.7. – P. 2030–2037.

Dreuillet C., Harper M., Tillit J. et al. Mislocalization of human transcription factor MOK2 in the presence of pathogenic mutations of lamin A/C // Biol. Cell. – 2008. – Vol.100. – P. 51–61.

Eriksson M., Brown W.T., Gordon L.B. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome // Nature. – 2003. – Vol.423. – P. 293–298.

Fatkin D., MacRae C., Sasaki T. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease // N. Engl. J. Med. – 1999. – Vol.341. – P. 1715–1724.

Funkhouser C., Sknepnek R., Shimi T. et al. Mechanical model of blebbing in nuclear lamin meshworks // PNAS. – 2013. – Vol.110. – P. 3248–3253.

Furukawa K., HottaY. cDNA cloning ofagerm cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells // Embo J. – 1993. – Vol.12. – P. 97–106.

Goldberg M.W., Fiserova J., Huttenlauch I., Stick R. A new model for nuclear lamina organization // Biochem. Soc/ Trans. – 2008. – Vol.36. – P. 1339–1343.

Goldman R.D., Shumaker D.K., Erdos M.R. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome // Proc. Natl. Acad. Sci. – 2004. – Vol.101. – P. 8963–8968.

Gonzalez-Suarez I., Redwood A., Perkins S. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway // Embo J. – 2009. – Vol.28. – P. 2414–2427.

Guelen L., Pagie L., Brasset E. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions // Nature. – 2008. – Vol.453 (7197). – P. 948–951.

Haithcock E., Dayani Y., Neufeld E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans // Proc. Natl. Acad. Sci. USA. – 2005. – Vol.102. – P. 16690–16695.

Han X., Feng X., Rattner J.B., et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor // Nat Cell Biol. – 2008. – Vol.10. – P. 1333–1340.

Hegele R. LMNA mutation position predicts organ system involvement in laminopathies // Clin Genet. – 2005. – Vol.68 (1). – P. 31–34.

Hegele R.A., Cao H., Liu D.M. et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy // Am. J. Hum. Genet. – 2006. – Vol.79 (2). – P. 383–389.

Houben F., De W.H.Vos, Krapels I.P. et al. Cytoplasmic localization of PML particles in laminopathies // Histochem. Cell. Biol. – 2012. – Vol.139 (1). – P. 119–134.

Hutchison C.J., Worman H.J. A-type lamins: guardians of the soma // Nat. Cell. Biol. – 2004. – Vol.6. – P. 1062–1067.

Ivorra C., Kubicek M., Gonzalez J.M. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C // Genes Dev. – 2006. – Vol.20. – P. 307–320.

Johnson B.R., Nitta R.T., Frock R.L. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation // Proc. Natl. Acad. Sci. – 2004. – Vol.101. – P. 9677–9682.

Kind J., van Steensel B. Genome-nuclear lamina interactions and gene regulation // Curr Opin Cell Biol. –2010. – Vol.22 (3). – P. 320–325.

Kubben N., Adriaens M., Meuleman W. et al. Mapping of lamin A- and progerin-interacting genome regions // Chromosoma. – 2012. – Vol.121 (5). – P. 447–464.

Lammerding J., Hsiao J., Schulze P.C. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells // J. Cell. Biol. – 2005. – Vol.170. – P. 781–791.

Li Y., Chu J.S., Kurpinski K. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells // Biophys J. – 2011. – Vol.100 (8). – P. 1902–1909.

Liu J., Rolef Ben-Shahar T., Riemer D., et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes // Mol. Biol. Cell. – 2000. – Vol.11. – P. 3937–3947.

Loewinger L., McKeon F. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm // EMBO J. – 1988. – Vol.7 (8). – P. 2301–2309.

Lu D., Lian H., Zhang X. et al. Lmna E82k mutation activates Fas and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice // PLoS One. – 2010. – Vol.5. – e15167.

Malashicheva A., Zabirnik A., Smolina N. et al. Lamin A/C mutations alter differentiation potential of mesenchymal stem cells // Cell and Tissue Biol. – 2013. – Vol.7 (4). – P. 325–328.

Manju K., Muralikrishna B., Parnaik V.K. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci // J. Cell. Sci. – 2006. – Vol.119. – P. 2704–2714.

Maresca G., Natoli M., Nardella M. et al. LMNA knock-down affects differentiation and progression of human neuroblastoma cells // PLoS One. – 2012. – Vol.7 (9). – e45513.

Mariappan I., Gurung R., Thanumalayan S., Parnaik K. Identification of cyclin D3 as a new interaction partner of lamin A/C // Biochem. Biophys. Res. Commun. – 2007. – Vol.355. – P. 981–985.

Mattout A., Goldberg M., Tzur Y. et al. Specific and conserved sequences in D melanogaster and C elegans lamins and histone H2A mediate the attachment of lamins to chromosomes // J. Cell. Sci. – 2007. – Vol.120. – P. 77–85.

Meaburn K., Cabuy E., Bonne G. et al. Primary laminopathy fibroblasts display altered genome organization and apoptosis // Aging Cell. – 2007. – Vol.6. – P. 139–153.

Melcer S., Hezroni H., Rand E. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation // Nat. Commun. – 2012. – Vol.3. – P.910.

Mewborn S.K., Puckelwartz M.J., Abuisneineh F. et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation // PLoS One. – 2010. – Vol.5 (12). – e14342.

Moir R., Yoon M., Khuon S., Goldman R. Nuclear lamins A and B1: Different pathways of assembly during nuclear envelope formation in living cells // J. Cell. Biol. – 2000. – Vol.151. – P. 1155–1168.

Mounkes L.C., Stewart C.L. Aging and nuclear organization: lamins and progeria // Curr. Opin. Cell Biol. – 2004. – Vol.16. – P. 322–327.

Muchir A., Bonne G., van der Kooi A.J. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B) // Hum. Mol. Genet. – 2000. – Vol.9. – P. 1453–1459.

Muchir A., Pavlidis P., Decostre V. et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy // J. Clin. Invest. – 2007. – Vol.117. – P. 1282–1293.

Nakajima N., Abe K. Genomic structure of the mouse A-type lamin gene locus encoding somatic and germ cell-specific lamins // FEBS Lett. – 1995. – Vol.365. – P. 108–114.

Narula N., Favalli V., Tarantino P. et al. Quantitative expression of the mutated lamin A/C gene in patients with cardiolaminopathy // J. Am. Coll. Cardiol. – 2012. – Vol.60 (19). – P. 1916–1920.

Navarro C., De Sandre-Giovannoli A., Bernard R. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identity restrictive dermopathy as a lethal neonatal laminopathy // Hum. Molec. Genet. – 2004. – Vol.13. – P. 2493–2503.

Novelli G., Muchir A., Sangiuolo F. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C // Am. J. Hum. Genet. – 2002. – Vol.71. – P. 426–431.

Padiath Q.S., Saigoh K., Schiffmann R. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy // Nat Genet. – 2006. – Vol.38 (10). – 1114–1123.

Pajerowski J.D., Dahl K.N., Zhong F.L. et al. Physical plasticity of the nucleus in stem cell differentiation // Proc. Natl. Acad. Sci. – 2007. – Vol.104. – P. 15619–15624.

Parry D.A., Conway J.F., Steinert P.M. Structural studies on lamin. Similarities and differences between lamin and intermediate-filament proteins // Biochem J. – 1986. – Vol.238. – P. 305–308.

Pekovic V., Harborth J., Broers J.L. et al. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts // J. Cell Biol. – 2007. – Vol.176. – P. 163–172.

Peric D.-Hupkes, Meuleman W., Pagie L. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation // Mol. Cell. – 2010. – Vol.38 (4). – P. 603–613.

Peter A., Stick R. Ectopic expression of prelamin a in early Xenopus embryos induces apoptosis // Eur. J. Cell Biol. – 2008. – Vol.87. – P. 879–891.

Quijano-Roy S., Mbieleu B., Bonnemann C.G. et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy // Ann Neurol. – 2008. – Vol.64. – P. 177–186.

Raffaele di Barletta M., Ricci E., Galluzzi G. et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy // Am. J. Hum. Genet. – 2000. – Vol.66. – P. 1407–1412.

Rajendran V., Purohit R., Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein // Amino Acids. – 2012. – Vol.43 (2). – P. 603–615.

Rober R.A., Sauter H., Weber K., Osborn M. Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells // J. Cell Sci. – 1990. – Vol.95. – P. 587–598.

Rusinol A., Sinensky M. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors // J. Cell Sci. – 2006. – Vol.119. – P. 3265–3272.

Scaffidi P., Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing // Nat. Cell Biol. – 2008. – Vol.10. – P. 452–459.

Scaffidi P., Misteli T. Lamin A-dependent nuclear defects in human aging // Science. – 2006. – Vol.312. – P. 1059–1063.

Schatten G., Maul G., Schatten H. et al. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins // Proc. Natl. Acad. Sci. – 1985. – Vol.82. – P. 4727–4731.

Schermelleh L., Carlton P.M., Haase S. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy // Science. – 2008. – Vol.320. – P. 1332–1336.

Shimi T., Pfleghaar K., Kojima S. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription // Genes Dev. – 2008. – Vol.22. – P. 3409–3421.

Shumaker D.K., Dechat T., Kohlmaier A. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging // Proc. Natl. Acad. Sci. – 2006. – Vol.103. – P. 8703–8708.

Sinkovec M., Petrovic D., Volk M., Peterlin B. Familial progressive sinoatrial and atrioventricular conduction disease of adult onset with sudden death, dilated cardiomyopathy, and brachydactyly: a new type of heart-hand syndrome? // Clin Genet. – 2005. – Vol.68. – P. 155–160.

Solovei I., Schermelleh L., During K. et al. Differences in centromere positioning of cycling and postmitotic human cell types // Chromosoma. – 2004. – Vol.112. – P. 410–423.

Spann T.P., Goldman A.E., Wang C. et al. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription // J. Cell Biol. – 2002. – Vol.156. – P. 603–608.

Sullivan T., Escalante-Alcalde D., Bhatt H. et al. Loss of A-type lamin expression compromises nuclear envelope interity leading to muscular dystrophy // J. Cell Biol. – 1999. – Vol.147. – P. 913–920.

Szczerbal I., Foster H.A., Bridger J.M. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system // Chromosoma. – 2009. – Vol.118 (5). – P. 647–663.

Tsai M., Wang S., Heidinger J. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly // Science. – 2006. – Vol.311. – P. 1887–1893.

Tsai M., Zheng Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly // Curr. Biol. – 2005. – Vol.15. – P. 2156–2163.

Vergnes L., Péterfy M., Bergo M. et al. Lamin B1 is required for mouse development and nuclear integrity // PNAS. – 2004. – Vol.101. – P. 10428–10433.

Wheeler M.A., Davies J.D., Zhang Q. et al. Distinct functional do­mains in nesprin-1a and nesprin-2b bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy // Exp. Cell Res. – 2007. – Vol.313. – P. 2845–2857.

Wolf M., Wang L., Alcalai R. et al. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease // J. Mol. Cell Cardiol. – 2008. – Vol.44. – P. 293–303.

Worman H., Ostlund C., Wang Y. Diseases of the nuclear envelope // Cold Spring Harb Perspect Biol. –2010. – Vol.2. – P. 760–776.

Опубліковано
2013-05-22
Цитовано
Як цитувати
Забірник, А. С., Костарєва, А. О., Малашичева, А. Б., Омельченко, О. А., & Перський, Є. Е. (2013). Структура і функції ламінів: норма і патологія. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Біологія», 18(1079), 9-23. вилучено із https://periodicals.karazin.ua/biology/article/view/13730
Розділ
БІОХІМІЯ

Найбільш популярні статті цього автора (авторів)