The impact of doping on the efficiency of GaAs –diode with active graded GaInAs side border

Keywords: transferred electron effect, active side boundary, molar fraction, graded gap, impact ionization, scattering, numerical simulation, sub-terahertz range

Abstract

Background. The development of modern communication, security, and medical systems requires compact terahertz radiation sources that can operate under normal conditions. One of the most promising devices is solid-state electronics, namely, Gunn diodes. Gunn diodes are quite miniature devices capable of generating microwave current oscillations under normal conditions, but to generate in the sub-terahertz and terahertz range, they need to be modified to eliminate physical limitations that prevent generation in these ranges.

Purpose of Work. The aim of this work is to study the effect of the dopant concentration on the static and dynamic characteristics of a planar Gunn diode with a graded gap active side boundary.

Techniques and Methodology. To obtain the characteristics of the diode, the charge transfer processes in it are numerically modeled using the ensemble Monte Carlo method, taking into account all relevant scattering mechanisms and the process of shock ionization. The paper calculates the current density dependences at different values of the DC voltage across the diode, and determines the efficiency and AC power optimized by the operating voltage across the diode when the diode is in the generation mode. All calculations are carried out for different concentrations of the donor impurity in the diode channel and in the active side boundary at the resonator frequencies of 200 GHz and 250 GHz.

Results: The existence of optimal concentrations and the ratio between the concentrations in the diode channel and the side boundary are shown. The maximum value of efficiency corresponds to a concentration in the channel of about 1017 cm-3 and the concentration of the donor doping in the active side boundary of 2·1016 cm-3 at frequency 250 GHz are demonstrated.

Conclusions: Optimal doping concentration for Gunn diode of 1,28 µm with a graded gap active side boundary is above 1017 cm-3 in diode channel, and at about 2·1016 cm-3 in ASB. It is possible to give optimal generation condition at maximal frequency of diode.

Downloads

Author Biographies

V. O. Zozulia, V. N. Karazin Kharkiv National University

61022, Kharkiv, Svobody square, 4

O. V. Botsula, V. N. Karazin Kharkiv National University

61022, Kharkiv, Svobody square, 4

K. H. Prykhodko , V. N. Karazin Kharkiv National University

61022, Kharkiv, Svobody square, 4

References

1. Kiarash Ahi, Anwar M. Advanced terahertz techniques for quality control and counterfeit detection. Proceedings of SPIE. 2016 May 26.
2. Wei L, Yu L, Jiaoqi H, Guorong H, Yang Z, Weiling F. Application of terahertz spectroscopy in biomolecule detection. Frontiers in Laboratory Medicine. 2018 Dec;2(4):127–33.
3. Vafapour Z, Keshavarz A, Ghahraloud H. The potential of terahertz sensing for cancer diagnosis. Heliyon. 2020 Dec 3 ;6(12): e05623.
4. Arnone DD, Ciesla CM, A. Corchia, Shunji Egusa, Pepper M, Chamberlain JM, et al. Applications of terahertz (THz) technology to medical imaging. Proceedings of SPIE. 1999 Sep 9.
5. Oshima N, Hashimoto K, Suzuki S, Asada M. Wireless data transmission of 34 Gbit/s at a 500-GHz range using resonant-tunnelling-diode terahertz oscillator. Electronics Letters. 2016 Oct 27;52(22):1897–8.
6. Abdullah Al-Khalidi, Wang J, Wasige E. Compact J-band Oscillators With 1mW RF output Power and Over 110 GHz Modulation Bandwidth. Enlighten: Publications (The University of Glasgow). 2018 Sep 1.
7. Appleby R, Wallace HB. Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region. IEEE Transactions on Antennas and Propagation. 2007 Nov;55(11):2944–56.
8. Song HJ, Tadao Nagatsuma. Handbook of Terahertz Technologies. CRC Press; 2015.
9. Isogawa T, Kumashiro T, Song HJ, Ajito K, Kukutsu N, Iwatsuki K, et al. Tomographic Imaging Using Photonically Generated Low-Coherence Terahertz Noise Sources. IEEE Transactions on Terahertz Science and Technology. 2012 Sep;2(5):485–92.
10. Chan WL, Deibel J, Mittleman DM. Imaging with terahertz radiation. Reports on Progress in Physics. 2007 Jul 12;70(8):1325–79.
11. Vitiello MS, Alessandro Tredicucci. Physics and technology of Terahertz quantum cascade lasers. Advances in physics: X. 2021 Jan 1;6(1).
12. Khalatpour A, Paulsen A, Deimert C, Wasilewski ZR, Hu Q. High-power portable terahertz laser systems. Nature Photonics. 2020 Nov 2;15(1):16–20.
13. Izumi R, Suzuki S, Asada M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. 2017 Aug 1.
14. Dai Y, Lu Z, Ye Q, Dang J, Zhao S, Lei X, et al. Study of InxGa1-xN/GaN Homotype Heterojunction IMPATT Diodes. IEEE Transactions on Electron Devices. 2021 Nov 1;68(11):5469–75.
15. Xiu-sheng L, Yang L, Zhang X, Ma X, Hao Y. GaN/AlxGa1−xN/GaN heterostructure IMPATT diode for D-band applications. Applied Physics A. 2019 Feb 23;125(3).
16. Sze SM. Modern Semiconductor Device Physics. Wiley-Interscience; 1998.
17. Sze SM, Ng KK. Physics of semiconductor Devices. John Wiley & Sons; 2006.
18. Eisele H, Naftaly M, Fletcher JR, Steenson DP, Stone MR. The Study of Harmonic-Mode Operation of GaAs TUNNETT Diodes and InP Gunn Devices Using a Versatile Terahertz Interferometer. Proceedings of the 15th International Symposium on Space Terahertz. 2004 Jan 1;336.
19. Hajo AS, Oktay Yilmazoglu, A. Dadgar, Franko Küppers, Kusserow T. Reliable GaN-Based THz Gunn Diodes With Side-Contact and Field-Plate Technologies. IEEE Access. 2020 Jan 1; 8:84116–22.
20. Storozhenko ІP. Frequency characteristics of diodes with intervalley electron transfer that are based on variband Inx(z)Ga1-x(z)As with various cathode contacts. Journal of Communications Technology and Electronics. 2007 Oct 1;52(10):1158–64.
21. Storozhenko IP. InP1-x(z)Asx(z) Variband Gunn Diodes with Different Cathode Contacts. Telecommunications and Radio Engineering. 2007;66(19):1775–90.
22. Shur MS. GaAs Devices and Circuits. Springer eBooks. 1987.
23. Khalid A, Pilgrim NJ, Dunn GM, Holland M, Stanley CR, Thayne I, et al. A Planar Gunn Diode Operating Above 100 GHz. IEEE Electron Device Letters. 2007 Oct 1;28(10):849–51.
24. Montes M, Dunn GM, Stephen A, Khalid A, Li C, David, et al. Reduction of Impact Ionization in GaAs-Based Planar Gunn Diodes by Anode Contact Design. IEEE Transactions on Electron Devices. 2012 Mar 1;59(3):654–60.
25. Botsula OV, Zozulia VO. Energy and Frequency Properties of Planar n+-n-n+ Diodes with Active Side Boundary. Journal of Nano-and electronic Physics. 2021 Jan 1;13(6):06028-4.
26. Zozulia VO, Botsula OV, Prykhodko КH, Sanin S, Katrich G, Fedosova S. Planar GaAs-InGaAs Heterostructure for Generation in Long Wave Part of Terahertz Range. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). 2022 Oct 3.
27. Botsula OV, Zozulia VO. Generation of THz Oscillations by Diodes with Resonant Tunneling Boundaries. Journal of Nano-and electronic Physics. 2020 Jan 1;12(6):06037-4.
28. Brennan KF, Mansour NS. Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe. Journal of Applied Physics. 1991 Jun 1;69(11):7844–7.
29. Botsula OV, Prykhodko КH, Zozulia VO. Impact ionization in graded gap transferred electron diode. 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON). 2021 Aug 26.
30. Birdsall CK, Fuss D. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational Physics. 1969 Apr 1;3(4):494–511.
31. Joppich W, Mijalković S. Multigrid methods for process simulation. Microelectronics Journal. 1995 Mar 1;26(2–3):xxvii–xxviii.
32. Приходько КГ, Боцула ОВ, Зозуля ВО. Особливості розвитку ударної іонізації в напівпровідникових сполуках InGaN та InAlN. Вісник Харківського Національного Університету Імені ВН Каразіна. 2021 Червень 30;(34):19–28.
33. Vurgaftman I, Meyer JR, Ram‐Mohan LR. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics. 2001 Jun 1;89(11):5815–75.
34. Adachi S. Properties of semiconductor alloys: Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons; 2009.
35. Iniguez-De-La-Torre A, Íñiguez-De-La-Torre I, Matéos J, González T, Sangaré P, Faucher M, et al. Searching for THz Gunn oscillations in GaN planar nanodiodes. Journal of Applied Physics. 111(11).
36. Rolland PA, Friscourt, Salmer G, Constant E. Theoretical study of 100 GHz GaAs transferred-electron devices. Journal De Physique Colloque. 1981 Oct 1;42(C7):C7-176.
Published
2023-12-26
Cited
How to Cite
Zozulia, V. O., Botsula, O. V., & Prykhodko , K. H. (2023). The impact of doping on the efficiency of GaAs –diode with active graded GaInAs side border. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (39), 27-35. https://doi.org/10.26565/2311-0872-2023-39-03