Partial cloacking of complex form objects with radioabsorbing materials
Abstract
In this paper, a method of partial cloaking of complex-shaped radar objects is proposed. A numerical simulation of the measurement of the radar cross section (RCS) of an object using the decomposition method is carried out. Within the framework of this method, the object is divided into elements and in the near field zone the object is irradiated by antenna element-by-element, then the reflection from each element is summed. The most significantly reflecting areas of the object surface are revealed. The possibility of reducing the RCS of such elements of the object surface is considered, while cloaking the surface areas of the object with the help of radio-absorbing materials (RAM) is carried out. The influence of such events on the average RCS of the entire facility was analyzed, the optimum part of the surface of the object, which should thus be masked, and the required level of reduction of the reflected signal (in fact, the quality of the used RAM) were detected.
Downloads
References
Maslovskiy A., Legenkiy M.. Analysis of geometrical techniques for reducing radar detectability of on-ground targets
//Applied Physics (YSF), 2015 International Young Scientists Forum on. – IEEE, 2015. – С. 1-4.
Taravati S., Abdolali A. A new three-dimensional conical ground-plane cloak with homogeneous materials //Progress In
Electromagnetics Research M. – 2011. – Т. 19. – С. 91-104.A.Maslovskiy, M. Legenkiy, and N. Kolchigin,
“Decompsition method for complex target RCS measuring”, Proceedings of conference on Electrical and Computer
Engineering (UKRCON), Kyiv, 2017.
Колчигин Н.Н., Васильченко И.И. Декомпозиционный способ экспериментального определения эффективной
площади рассеяния объектов сложной формы// Вестник ХНУ, серия «Радиофизика и электроника», № 405, –
– С. 87-90.
Ufimtsev P. Y. Fundamentals of the physical theory of diffraction. – John Wiley & Sons, 2014.
Sukharevsky O.I. Electromagnetic Wave Scattering by Aerial and Ground Radar Objects CRC Press, Taylor&Francis
Group, 288 p., 2015.
Jeng S. K. Near-field scattering by physical theory of diffraction and shooting and bouncing rays //IEEE Transactions on
Antennas and Propagation. – 1998. – Т. 46. – №. 4. – С. 551-558.
Ling H., Chou R. C., Lee S. W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity //IEEE
Transactions on Antennas and propagation. – 1989. – Т. 37. – №. 2. – С. 194-205.
Boag A., Michielssen E. A fast physical optics (FPO) algorithm for double-bounce scattering //IEEE Transactions on
Antennas and Propagation. – 2004. – Т. 52. – №. 1. – С. 205-212.
Bhalla R. et al. 3D scattering center representation of complex targets using the shooting and bouncing ray technique: A
review //IEEE Antennas and Propagation Magazine. – 1998. – Т. 40. – №. 5. – С. 30-39.
Tao Y. B., Lin H., Bao H. J. KD-tree based fast ray tracing for RCS prediction //Progress In Electromagnetics Research.
– 2008. – Т. 81. – С. 329-341.
Chen S. H., Jeng S. K. SBR image approach for radio wave propagation in tunnels with and without traffic //IEEE
Transactions on Vehicular Technology. – 1996. – Т. 45. – №. 3. – С. 570-578.
Bhalla R., Moore J., Ling H. A global scattering center representation of complex targets using the shooting and
bouncing ray technique //IEEE Transactions on Antennas and Propagation. – 1997. – Т. 45. – №. 12. – С. 1850-1856.
Gao P. C. et al. Mapping the SBR and TW-ILDCs to heterogeneous CPU-GPU architecture for fast computation of
electromagnetic scattering //Progress In Electromagnetics Research. – 2012. – Т. 122. – С. 137-154.
Штагер Е.А. Рассеяние радиоволн на телах сложной формы // М.: Радио и связь, 1986 г. – 184 с.
Кобак В.О., Радиолокационные отражатели. М.: «Советское радио», 1975 г. – 248 с.