Computer modeling temperature and strength characteristics of an ultra-supercritical loop-type steam turbine rotor
Abstract
Relevance. A global trends have emerged involving the continuous increase in demands for efficiency and reliability of power equipment, particularly ultra-supercritical steam turbines. Such turbines operate under challenging conditions of high temperatures and pressures, which can lead to significant thermomechanical stresses in rotor. Computer modeling is ideally suited to solving such problems. Therefore, research dedicated to strength calculations and determining the temperature characteristics of blades in high- and medium-pressure cylinders is highly relevant. These studies enable engineers to ensure the strength and durability of components in steam turbines.
Objective. To perform strength and temperature distribution calculations for the blades of high- and medium-pressure cylinders in a loop-type steam turbine with ultra-supercritical initial steam parameters.
Results. Data on the temperature field distribution in rotor blades of high- and medium-pressure cylinders were obtained. Using the results of the temperature calculations, the strength of the first rotor blades in the high-pressure cylinder was assessed under the influence of uneven temperature distribution and rotor rotation. Cooling of the first-stage turbine blades is achieved through convective heat exchange from the flow of cold steam from the last stage to the internal channels of the blades.
Conclusions. The results demonstrate the efficiency of the selected blade cooling method and the level of maximum stresses within the blades. One of the notable features of the operating conditions for loop-type turbine blades is the uneven heating that occurs both during transient and steady-state operating modes. Uneven heating leads to the formation of thermal stresses in the blades, which negatively affects their lifespan. Moreover, the high temperature of steam with ultra-supercritical parameters can significantly reduce the material's strength properties.
Downloads
References
/References
Nicholas T.E.W., Scobie J.A., Lock G.D., Tang H. A Model of Mass and Heat Transfer for Disc Temperature Prediction in Open Compressor Cavities (2024) Journal of Turbomachinery, 146 (4), art. no. 041001, DOI: 10.1115/1.4064082
Babazadeh M.A., Babaelahi M., Saadatfar M. New optimum configuration for the FGM rotating disc in gas turbines using combined thermal-mechanical analysis: An analytical approach (2024) Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238 (7), pp. 3038 - 3051, DOI: 10.1177/09544062231195447
Sierikova O., Strelnikova E., Degtyariov K. Numerical Simulation of Strength and Aerodynamic Characteristics of Small Wind Turbine Blades (2023) Lecture Notes in Networks and Systems, 657 LNNS, pp. 357 - 370. https://link.springer.com/chapter/10.1007/978-3-031-36201-9_31
Ghoreishi S.M.N., Mehri Khansari N. Mode (I, II, III) Stress Intensity Factors of Composite-Coated Gas Turbine Blade Using Semi-Elliptical Crack (2023) Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 47 (4), pp. 1841-1857, DOI: 10.1007/s40997-023-00592-7
Hu P., Meng Q., Fan W., Gu W., Wan J., Li Q. Vibration characteristics and life prediction of last stage blade in steam turbine Based on wet steam model (2024) Engineering Failure Analysis, 159, art. no. 108127, DOI: 10.1016/j.engfailanal.2024.108127
Strelnikova O., Gnitko V., Degtyariov K., Tonkonozhenko A. Advanced computational models and software on predicting the effective elastic properties for computer-simulated structures of nanocomposite, (2020) 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020 - Conference Proceedings, art. no. 9250093, pp. 171 - 176. https://ieeexplore.ieee.org/document/9250093
Zachary, J. "Steam Turbine Design Considerations for Ultrasupercritical Cycles." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C. Glasgow, UK. June 14–18, 2010. pp. 2171-2179. ASME. https://doi.org/10.1115/GT2010-22317
Wojciech Kosman. The influence of external cooling system on the performance of supercritical steam turbine cycles. archives of thermodynamics Vol. 31(2010), No. 3, 131–144 DOI: 10.2478/v10173-010-0019-4
Bohn, D., & Kusterer, K. (2005). Turbulent and conjugate heat transfer simulation for gas turbine application. Modelling and Simulation of Turbulent Heat Transfer, 16, 247-313. doi:10.2495/978-1-85312-956-8/08
Bohn, D, Ren, J, & Kusterer, K. "Cooling Performance of the Steam-Cooled Vane in a Steam Turbine Cascade." Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2005, Parts A and B. Reno, Nevada, USA. June 6–9, 2005. pp. 217-226. ASME. https://doi.org/10.1115/GT2005-68148
Wojciech Kosman, Thermal analysis of cooled supercritical steam turbine components, Energy, Volume 35, Issue 2, 2010, Pages 1181-1187, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2009.05.033.
Grzegorz Nowak, Włodzimierz Wróblewski, Iwona Nowak, Convective cooling optimization of a blade for a supercritical steam turbine, International Journal of eat and Mass Transfer, Volume 55, Issues 17–18, 2012, Pages 4511-4520, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.072
Włodzimierz Wróblewski, Numerical evaluation of the blade cooling for the supercritical steam turbine, Applied Thermal Engineering, Volume 51, Issues 1–2, 2013, Pages 953-962, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2012.10.048.
ANSYS Mechanical APDL Fluids Theory Guide. – Canonsburg, PA: ANSYS, Inc., 2019. – 914 p. https://www.academia.edu/33546434/ANSYS_Mechanical_APDL_Fluids_Analysis_Guide
ANSYS Fluent Theory Guide. – Canonsburg, PA: ANSYS, Inc., 2019. – 988 p. https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf
Menter F. R. Two-equation eddy viscosity turbulence models for engineering applications / F. R. Menter // AIAA J. – 1994. – 32, № 11. – P. 1299–1310.
Peng D.-Y. A New Two-Constant Equation of State / D.-Y. Peng, D. B. Robinson // Industrial & Engineering Chemistry Fundamentals. – 1976. – 15 (1). – P. 59-64. DOI: 10.1021/i160057a011
Vo D.-T., Mai T.-D., Kim B., Jung J.-S., Ryu J. Numerical investigation of crack initiation in high-pressure gas turbine blade subjected to thermal-fluid-mechanical low-cycle fatigue (2023) International Journal of Heat and Mass Transfer, 202, art. no. 123748, DOI: 10.1016/j.ijheatmasstransfer.2022.123748
Rusanov A.V., Rusanov R.A., Dehtyarʹov K.H., Palʹkov S.A., Palʹkov I.A., Kryutchenko D.V., Protochna chastyna parovoyi turbiny petlʹovoho typu dlya roboty na ulʹtra-superkrytychnykh pochatkovykh parametrakh pary, № 156077, MPK: F01D25/30, 08.05.2024, byul. № 19/2024.https://sis.nipo.gov.ua/uk/search/detail/1798427/
Rusanov A.V., Rusanov R.A., Degtyar'ov K.G., Pal'kov S.A., Pal'kov Í.A., Kryutchenko D.V., Bikov YU.A., Sistema okholodzhennya lopatok rotora turbíni petl'ovogo tipu, № 156085, F01D5/18, 08.05.2024, byul. № 19/2024. https://sis.nipo.gov.ua/uk/search/detail/1798401/
Solovey, V., Zipunnikov, M., Rusanov, R. Increasing the manoeuvrability of power units of the thermal power plants due to applying the hydrogen-oxygen systems. JPhys Energy. 2023. Vol. 5. 014012, doi 10.1088/2515-7655/aca9ff
Strelnikova, E., Kriutchenko, D., Gnitko, V., Degtyarev, K.: Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations, Engineering Analysis with Boundary Elements, 111, 2020, 78-87, https://doi.org/10.1016/j.enganabound.2019.10.008.
T.E.W.Nicholas, Scobie J.A., Lock G.D., Tang H. A Model of Mass and Heat Transfer for Disc Temperature Prediction in Open Compressor Cavities (2024) Journal of Turbomachinery, 146 (4), art. no. 041001, DOI: 10.1115/1.4064082
M.A. Babazadeh, M. Babaelahi, M. Saadatfar New optimum configuration for the FGM rotating disc in gas turbines using combined thermal-mechanical analysis: An analytical approach (2024) Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238 (7), pp. 3038 - 3051, DOI: 10.1177/09544062231195447
O. Sierikova, E. Strelnikova, K. Degtyariov. Numerical Simulation of Strength and Aerodynamic Characteristics of Small Wind Turbine Blades (2023) Lecture Notes in Networks and Systems, 657 LNNS, pp. 357 - 370. https://link.springer.com/chapter/10.1007/978-3-031-36201-9_31
S.M.N. Ghoreishi, Mehri Khansari. Mode (I, II, III) Stress Intensity Factors of Composite-Coated Gas Turbine Blade Using Semi-Elliptical Crack (2023) Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 47 (4), pp. 1841-1857, DOI: 10.1007/s40997-023-00592-7
P. Hu, Q. Meng, W. Fan, W. Gu, J. Wan, Q. Li. Vibration characteristics and life prediction of last stage blade in steam turbine Based on wet steam model (2024) Engineering Failure Analysis, 159, art. no. 108127, DOI: 10.1016/j.engfailanal.2024.108127
O. Strelnikova, V. Gnitko, K. Degtyariov, A. Tonkonozhenko. Advanced computational models and software on predicting the effective elastic properties for computer-simulated structures of nanocomposite, (2020) 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020 - Conference Proceedings, art. no. 9250093, pp. 171 - 176. https://ieeexplore.ieee.org/document/9250093
J. Zachary, "Steam Turbine Design Considerations for Ultrasupercritical Cycles." Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C. Glasgow, UK. June 14–18, 2010. pp. 2171-2179. ASME. https://doi.org/10.1115/GT2010-22317
W. Kosman. The influence of external cooling system on the performance of supercritical steam turbine cycles. archives of thermodynamics Vol. 31(2010), No. 3, 131–144 DOI: 10.2478/v10173-010-0019-4
D. Bohn, K. Kusterer, (2005). Turbulent and conjugate heat transfer simulation for gas turbine application. Modelling and Simulation of Turbulent Heat Transfer, 16, 247-313. doi:10.2495/978-1-85312-956-8/08
D. Bohn, J. Ren, K. Kusterer. "Cooling Performance of the Steam-Cooled Vane in a Steam Turbine Cascade." Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 3: Turbo Expo 2005, Parts A and B. Reno, Nevada, USA. June 6–9, 2005. pp. 217-226. ASME. https://doi.org/10.1115/GT2005-68148
W. Kosman, Thermal analysis of cooled supercritical steam turbine components, Energy, Volume 35, Issue 2, 2010, Pages 1181-1187, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2009.05.033.
G. Nowak, W. Wróblewski, I. Nowak, Convective cooling optimization of a blade for a supercritical steam turbine, International Journal of eat and Mass Transfer, Volume 55, Issues 17–18, 2012, Pages 4511-4520, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.072
W. Wróblewski, Numerical evaluation of the blade cooling for the supercritical steam turbine, Applied Thermal Engineering, Volume 51, Issues 1–2, 2013, Pages 953-962, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2012.10.048.
ANSYS Mechanical APDL Fluids Theory Guide. – Canonsburg, PA: ANSYS, Inc., 2019. – 914 p. https://www.academia.edu/33546434/ANSYS_Mechanical_APDL_Fluids_Analysis_Guide
ANSYS Fluent Theory Guide. – Canonsburg, PA: ANSYS, Inc., 2019. – 988 p. https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf
Menter F. R. Two-equation eddy viscosity turbulence models for engineering applications / F. R. Menter // AIAA J. – 1994. – 32, № 11. – P. 1299–1310.
Peng D.-Y. A New Two-Constant Equation of State / D.-Y. Peng, D. B. Robinson // Industrial & Engineering Chemistry Fundamentals. – 1976. – 15 (1). – P. 59-64. DOI: 10.1021/i160057a011
T. D..Vo, T. D. Mai, B. Kim, J.-S. Jung, J . Ryu. Numerical investigation of crack initiation in high-pressure gas turbine blade subjected to thermal-fluid-mechanical low-cycle fatigue (2023) International Journal of Heat and Mass Transfer, 202, art. no. 123748, DOI: 10.1016/j.ijheatmasstransfer.2022.123748
А.В. Русанов, Р.А. Русанов, К.Г. Дегтярьов, С.А. Пальков, І.А.Пальков, Д.В. Крютченко, Проточна частина парової турбіни петльового типу для роботи на ультра-суперкритичних початкових параметрах пари, № 156077, МПК: F01D25/30, 08.05.2024, бюл. № 19/2024. https://sis.nipo.gov.ua/uk/search/detail/1798427/
А.В. Русанов, Р.А. Русанов, К.Г. Дегтярьов, С.А. Пальков, І.А.Пальков, Д.В. Крютченко, Ю.А. Биков, Система охолодження лопаток ротора турбіни петльового типу, № 156085, F01D5/18, 08.05.2024, бюл. № 19/2024. https://sis.nipo.gov.ua/uk/search/detail/1798401/
V. Solovey, M. Zipunnikov, R. Rusanov. Increasing the manoeuvrability of power units of the thermal power plants due to applying the hydrogen-oxygen systems. JPhys Energy. 2023. Vol. 5. 014012, doi 10.1088/2515-7655/aca9ff
E. Strelnikova, D. Kriutchenko, V. Gnitko, K. Degtyarev. Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations, Engineering Analysis with Boundary Elements, 111, 2020, 78-87, https://doi.org/10.1016/j.enganabound.2019.10.008