Research on survival strategies of artificial life in dynamic environment
Abstract
This research seeks to develop evolutionary methods for constructing deep neural networks, offering potential improvements to machine learning techniques by modeling adaptive architectures under selective pressures.
Purpose. The goal of the work is to explore the dynamics of neural complexity in artificial life agents exposed to progressively challenging environments.
Research methods. We conducted a two-dimensional simulation to model populations of agents with evolving neural networks and physical forms. The environment progresses from simple conditions to increasingly complex scenarios, including static walls, moving obstacles, hazardous zones, and lethal poisons. Our approach builds on fundamental artificial life systems such as Tierra, Avida, and PolyWorld. The neural architectures evolve based on principles inspired by the NeuroEvolution of Augmenting Topologies. We apply the Tononi–Sporns–Edelman complexity measure to evaluate neural integration and specialization, helping us understand how agents adapt their networks to achieve a balance between global coherence and localized functionality.
Results. Research indicated that while complex environments can temporarily enhance neural sophistication, harsher conditions often favor simpler, more prolific reproductive r-strategies. Effect, populations may create reflex-driven, stimulus-response behaviors instead of developing complex neural structures.
Conclusions. These findings enhance our understanding of adaptive intelligence and guide approaches for designing scalable, matching learning systems in robotics and deep neural network architecture development, contributing to the broader goal of understanding how artificial intelligence should evolve. We propose utilizing a recursive genetic algorithm to optimize these balance challenges, promoting long-term neural adaptation to dynamic environments.
Downloads
References
/References
Krizhevsky A., Sutskever I., Hinton G. E. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems. 2012. vol. 25, pp. 84–90. DOI: 10.1145/3065386.
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser Ł., Polosukhin I. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 6000–6010. https://dl.acm.org/doi/10.5555/3295222.3295349.
Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature. 2016, vol. 529, no. 7587, pp. 484–489. DOI: 10.1038/nature16961.
Ray T. S. Evolution, Ecology, and Optimization of Digital Organisms. Santa Fe, 1992. 47 p. https://faculty.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
Adami C., Brown C. T. Evolutionary Learning in the 2D Artificial Life System “Avida”. Artificial Life IV. 2020. pp. 373–377. DOI: 10.7551/MITPRESS/1428.003.0049.
Lu C., Beukman M., Matthews M., Foerster J. JaxLife: An Open-Ended Agentic Simulator. Proceedings of the ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. Online, July 22–26, 2024. p. 47. DOI: 10.1162/isal_a_00770.
Sims K. Evolving virtual creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘94). New York, 1994, pp. 15–22. DOI: 10.1145/192161.192167.
Adamatzky A. Framsticks. Kybernetes. 2000, vol. 29, no. 9/10. DOI: 10.1108/k.2000.06729iad.001.
Yaeger L. Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and Behavior or PolyWorld: Life in a New Context. Santa Fe Institute Studies in the Sciences of Complexity - Proceedings Volume. 1994, vol. 17, p. 263. https://www.researchgate.net/publication/2448680_Computational_Genetics_Physiology_Metabolism_Neural_Systems_Learning_Vision_and_Behavior_or_PolyWorld_Life_in_a_New_Context
Gras R., Devaurs D., Wozniak A., Aspinall A. An individual-based evolving predator-prey ecosystem simulation using a fuzzy cognitive map as the behavior model. Artificial Life. 2009, vol. 15(4), pp. 423–463. https://pubmed.ncbi.nlm.nih.gov/19463060/
Cope D. Real-time Evolution of Multicellularity with Artificial Gene Regulation. The 2023 Conference on Artificial Life. MIT Press, May 2023, pp. 77–86. DOI: 10.1162/isal_a_00690.
Hamon G., Nisioti E., Moulin-Frier C. Eco-evolutionary Dynamics of Non-episodic Neuroevolution in Large Multi-agent Environments. Proceedings of the Companion Conference on Genetic and Evolutionary Computation (GECCO ‘23 Companion). Association for Computing Machinery, New York, NY, USA, 2023, pp. 143–146. DOI: 10.1145/3583133.3590703.
Wang R., Lehman J., Clune J., Stanley K. O. Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions. 2019. Available at: https://arxiv.org/abs/1901.01753 (access date: 29.08.2023)
Auerbach J. E., Bongard J. C. Environmental Influence on the Evolution of Morphological Complexity in Machines. PLOS Computational Biology. 2014, vol. 10(1). DOI: 10.1371/journal.pcbi.1003399.
Giannakakis E., Khajehabdollahi S., Levina A. Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents. Proceedings of the ALIFE 2023: Ghost in the Machine. Online, 2023, p. 22. DOI: 10.1162/isal_a_00606.
Canino-Koning R., Wiser M. J., Ofria C. The Evolution of Evolvability: Changing Environments Promote Rapid Adaptation in Digital Organisms. Proceedings of the Artificial Life Conference 2016. 2016, pp. 268–275. DOI: 10.1162/978-0-262-33936-0-CH047.
Yaeger L. S., Sporns O. Evolution of Neural Structure and Complexity in a Computational Ecology. Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge, MA, 2006, pp. 330–336. https://www.researchgate.net/publication/228630335_Evolution_of_neural_structure_and_complexity_in_a_computational_ecology
Yaeger L., Griffith V., Sporns O. Passive and Driven Trends in the Evolution of Complexity. Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems. 2008, pp. 725–732. https://arxiv.org/abs/1112.4906
Yaeger L. S. Identifying Neural Network Topologies That Foster Dynamical Complexity. Advances in Complex Systems. 2013. vol. 16, iss. 02n03, p. 1350032. DOI: 10.1142/S021952591350032X.
Zachepylo M., Yushchenko O. The Scientific Basis, Some Results, and Perspectives of Modeling Evolutionarily Conditioned Noogenesis of Artificial Creatures in Virtual Biocenoses. Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies. 2023, no. 2 (10), pp. 85–94. DOI: 10.20998/2079-0023.2023.02.13.
Stanley K. O., Miikkulainen R. Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation. 2002, vol. 10(2), pp. 99–127. DOI: 10.1162/106365602320169811.
Tononi G., Sporns O., Edelman G. M. A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA. 1994, vol. 91, no. 11, pp. 5033–5037. DOI: 10.1073/PNAS.91.11.5033.
Shannon C. E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948, vol. 27, no. 3, pp. 379–423. DOI: 10.1002/J.1538-7305.1948.TB01338.X.
Zachepylo M., Yushchenko O. Assessing Neural Complexity for Noogenesis in ALife Simulations. XVIII International Scientific and Practical Conference of Master’s and Postgraduate Students Theoretical and Practical Research of Young Scientists. Kharkiv: National Technical University Kharkiv Polytechnic Institute, 2024, p. 10. https://web.kpi.kharkov.ua/masters/wp-content/uploads/sites/135/2024/11/Zbirnyk-tez-TPRYS2024.pdf
MacArthur R. H., Wilson E. O. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 1967. 224 p. https://www.semanticscholar.org/paper/The-Theory-of-Island-Biogeography-Macarthur-Wilson/25e2b6dbf36bfe4b269e2dd70f6c3d00fb266484
Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Evolutionary Writings. 2010. DOI: 10.1093/OWC/9780199580149.003.0005.
Yushchenko A. G. Recursive Genetic Algorithm for Solving the Traveling Salesman Problem. Anniversary Edition of “Information Systems” Department at NTU KhPI. 2014, pp. 154–162. Available at: https://www.researchgate.net/publication/262686057 (access date: 03.12.2024)
Krizhevsky A., Sutskever I., Hinton G. E. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems. 2012. Vol. 25. P. 84–90. DOI: 10.1145/3065386.
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser Ł., Polosukhin I. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 2017. P. 6000–6010. https://dl.acm.org/doi/10.5555/3295222.3295349.
Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D. Mastering the game of Go with deep neural networks and tree search. Nature. 2016. Vol. 529, No. 7587. P. 484–489. DOI: 10.1038/nature16961.
Ray T. S. Evolution, Ecology, and Optimization of Digital Organisms. Santa Fe, 1992. 47 p. https://faculty.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
Adami C., Brown C. T., Evolutionary Learning in the 2D Artificial Life System “Avida”. Artificial Life IV. 2020. P. 373–377. DOI: 10.7551/MITPRESS/1428.003.0049.
Lu C., Beukman M., Matthews M., Foerster J. JaxLife: An Open-Ended Agentic Simulator. Proceedings of the ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. Online, July 22–26, 2024. P. 47. DOI: 10.1162/isal_a_00770.
Sims K. Evolving virtual creatures. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques (SIGGRAPH '94). New York, 1994. P. 15–22. DOI: 10.1145/192161.192167.
Adamatzky A. Framsticks. Kybernetes. 2000. Vol. 29, No. 9/10. DOI: 10.1108/k.2000.06729iad.001.
Yaeger L. Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or Poly World: Life in a new context. Santa Fe Institute Studies in the Sciences of Complexity - Proceedings Volume. 1994. Vol. 17, P. 263–263. https://www.researchgate.net/publication/2448680_Computational_Genetics_Physiology_Metabolism_Neural_Systems_Learning_Vision_and_Behavior_or_PolyWorld_Life_in_a_New_Context
Gras R., Devaurs D., Wozniak A., Aspinall A. An individual-based evolving predator-prey ecosystem simulation using a fuzzy cognitive map as the behavior model. Artificial Life. 2009. Vol. 15(4), P. 423–463. https://pubmed.ncbi.nlm.nih.gov/19463060/
Cope D. Real-time Evolution of Multicellularity with Artificial Gene Regulation. The 2023 Conference on Artificial Life. MIT Press, May 2023. P. 77–86 DOI: 10.1162/isal_a_00690.
Hamon G., Nisioti E., Moulin-Frier C. Eco-evolutionary Dynamics of Non-episodic Neuroevolution in Large Multi-agent Environments. Proceedings of the Companion Conference on Genetic and Evolutionary Computation (GECCO ‘23 Companion). Association for Computing Machinery, New York, NY, USA. 2023. P. 143–146. DOI: 10.1145/3583133.3590703.
Wang R., Lehman J., Clune J., Stanley K. O. Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions. 2019. URL: https://arxiv.org/abs/1901.01753 (access date: 29.08.2023)
J Auerbach J. E., Bongard J. C. Environmental Influence on the Evolution of Morphological Complexity in Machines. PLOS Computational Biology. 2014. Vol. 10(1). DOI: 10.1371/journal.pcbi.1003399.
Giannakakis E., Khajehabdollahi S., Levina A. Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents. Proceedings of the ALIFE 2023: Ghost in the Machine. Online. July 24–28, 2023. P. 22. DOI: 10.1162/isal_a_00606.
Canino-Koning R., Wiser M. J., Ofria C. The Evolution of Evolvability: Changing Environments Promote Rapid Adaptation in Digital Organisms. Proceedings of the Artificial Life Conference 2016. 2016. P. 268–275. DOI: 10.1162/978-0-262-33936-0-CH047.
Yaeger L. S., Sporns O. Evolution of Neural Structure and Complexity in a Computational Ecology. Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge, MA, 2006. P. 330–336. https://www.researchgate.net/publication/228630335_Evolution_of_neural_structure_and_complexity_in_a_computational_ecology
Yaeger L., Griffith V., Sporns O. Passive and Driven Trends in the Evolution of Complexity. Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems. 2008. P. 725–732. https://arxiv.org/abs/1112.4906
Yaeger L. S. Identifying Neural Network Topologies That Foster Dynamical Complexity. Advances in Complex Systems, 2013. Vol. 16, iss. 02n03, P. 1350032. DOI: 10.1142/S021952591350032X.
Zachepylo M., Yushchenko O. The Scientific Basis, Some Results, and Perspectives of Modeling Evolutionarily Conditioned Noogenesis of Artificial Creatures in Virtual Biocenoses. Bulletin of National Technical University “KhPI”. Series: System Analysis, Control and Information Technologies. 2023. No. 2 (10). P. 85–94. DOI: 10.20998/2079-0023.2023.02.13.
Stanley K. O., Miikkulainen R. Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation. 2002. Vol. 10(2). P. 99–127. DOI: 10.1162/106365602320169811.
Tononi G., Sporns O., Edelman G. M. A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA. 1994. Vol. 91, no. 11. P. 5033–5037. DOI: 10.1073/PNAS.91.11.5033.
Shannon C. E. A Mathematical Theory of Communication. Bell System Technical Journal. 1948. Vol. 27, no. 3. P. 379–423. DOI: 10.1002/J.1538-7305.1948.TB01338.X.
Zachepylo M., Yushchenko O. Assessing Neural Complexity for Noogenesis in ALife Simulations. XVIII Міжнародна науково-практична конференція магістрантів та аспірантів ТЕОРЕТИЧНІ ТА ПРАКТИЧНІ ДОСЛІДЖЕННЯ МОЛОДИХ ВЧЕНИХ. Kharkiv: National Technical University Kharkiv Polytechnic Institute. 2024. P. 10. https://web.kpi.kharkov.ua/masters/wp-content/uploads/sites/135/2024/11/Zbirnyk-tez-TPRYS2024.pdf
MacArthur R. H., Wilson E. O. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 1967. 224 p. https://www.semanticscholar.org/paper/The-Theory-of-Island-Biogeography-Macarthur-Wilson/25e2b6dbf36bfe4b269e2dd70f6c3d00fb266484
Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Evolutionary Writings. 2010. DOI: 10.1093/OWC/9780199580149.003.0005.
Yushchenko A. G. Recursive Genetic Algorithm for Solving the Traveling Salesman Problem. Anniversary Edition of “Information Systems” Department at NTU KhPI. 2014. P. 154–162. URL: https://www.researchgate.net/publication/262686057 (access date: 12.12.2024).