Technology of modeling of plasma parameters of an overvoltage nanosecond discharge using the particle-in-cell method and software implementation
Abstract
Purpose. The purpose of this scientific work is a comparative analysis of numerical modeling methods that are an integral part of modern scientific research, especially in complex physical systems such as plasma and the development of a technology for numerical modeling of plasma parameters of an overvoltage nanosecond discharge using the Particle-In-Cell (PIC) method for analyzing the dynamics of electrons, ions and their interaction with electromagnetic fields. The study is aimed at obtaining a detailed understanding of the physical processes occurring in non-equilibrium plasma and determining the main discharge parameters, such as electron density, electron energy, drift velocity, electric and magnetic fields, as well as the features of the formation of streamers and ionization waves.
Research methods. The work uses the Particle-In-Cell (PIC) method for numerical modeling of plasma dynamics, which combines the kinetic description of the motion of charged particles with the calculation of electromagnetic fields on a regular grid. Difference schemes are used to solve Maxwell's equations, and interpolation algorithms and charge density calculations are used to model particle interactions. Methods for analyzing the spectral characteristics of plasma are also used to validate the results.
Results. The results obtained will allow optimizing the conditions for creating plasma for applications in technological processes, such as material synthesis, plasma chemistry, sensors, and optoelectronics. The results are consistent with experimental data for similar discharge conditions, in particular in air mixtures at atmospheric pressure. The method demonstrated high accuracy in modeling non-stationary processes characteristic of nanosecond discharges, such as the formation of streamers and ionization waves.
Conclusions. It is established that the numerical approach provides a detailed understanding of the behavior of plasma in non-equilibrium conditions, which opens up prospects for optimizing technological processes in plasma chemistry, materials science and ecology. Despite the high computational complexity, the PIC method is an effective tool for studying plasma phenomena in complex physical conditions. Future research is to further improve numerical models for more accurate modeling of processes in plasma under various overvoltage conditions. The development of combined approaches that combine PIC methods with other models, in particular hydrodynamic ones, for a more effective description of multicomponent plasma systems is expected. The application of these models in plasma chemistry technologies, materials science, sensors and optoelectronics opens up new opportunities for creating innovative materials and systems.
Downloads
References
/References
Zagorodniy A.G., Momot A.I. Introduction to the kinetic theory of plasma. M.M. Bogolyubov Institute of Theoretical Physics, NAS of Ukraine. Kyiv. Naukova Dumka, 2015. 458 p. [in Ukrainian]
Kirichok A.V., Kuklin V.M., Pryimak A.V., Zagorodny A.G. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma. Physics of Plasmas, 2015. 22 (9). DOI:10.1063/1.4931058
Chornyi O.P., Typyuk V.K., Istomina N.M. et al. Mathematical methods of modeling. – Kremenchuk: PP Shcherbatykh O.V., 2016. – 234 p.: ill. [in Ukrainian] https://pdf.lib.vntu.edu.ua/books/2019/Chornij_2016_234.pdf
Kvetny R. N., Bogach I. V., Boyko O. R., Sofina O. Yu., Shushura O. M. Computer modeling of systems and processes. Calculation methods. Part 1: textbook; edited by R. N. Kvetny. – Vinnytsia: VNTU, 2012. – 193 p. http://kist.ntu.edu.ua/textPhD/kmsp.pdf [in Ukrainian]
Lieberman M. A., Lichtenberg A. J. Principles of Plasma Discharges and Materials Processing. Wiley-Interscience, 2005. 794 p. DOI:10.1002/0471724254
C. K. Birdsall, A. B. Langdon Plasma Physics via Computer Simulation. McGraw-Hill. 1991. https://doi.org/10.1016/0010-4655(86)90240-7.
Verboncoeur J. P., Birdsall C. K., Langdon A. B. Simultaneous Potential and Circuit Solution for 1D Bounded Plasma Particle Simulation Codes. Physics of Plasmas, 1995. Volume 2, Issue 5, pages 2015–2025. DOI: 10.1063/1.871281
Luque J., Ebert U. High-speed video and modelling of visible streamer propagation in air. Journal of Physics D: Applied Physics, 2014. Volume 47, Issue 44, Article 445205. DOI: 10.1088/0022-3727/47/44/445205
Raizer Y.P. Gas Discharge Physics. Springer-Verlag, New York. 1991. http://dx.doi.org/10.1007/978-3-642-61247-3
Gurevich А.V., A.P. Khazanov, M.N. Shneider Physics of Gas Discharges: CRC Press. 1997
Capitelli M., Chiavarini L., Ocampo G. S. Plasma Chemistry: Springer, 2000. ISBN: 978-3-642-08428-8.
Ferreira J., Loureiro J. P. Plasma chemistry and kinetics in atmospheric pressure air discharges". Plasma Sources Science and Technology. 2003. V.12, №3, p. S58-S64. DOI:10.1039/C8CP02473A
Zoltán Donkó. Kinetic theory of plasmas: From electron kinetics to transport. Journal of Physics: Conference Series, 2011. Volume 306, Issue 1, Article 012001. DOI: 10.1088/1742-6596/306/1/012001.
Hagelaar G., Pitchford L. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for Plasma Sources Science & Technology. 2005. 14(4). DOI:10.1088/0963-0252/14/4/011.
G.V. Naidis. Streamer-to-leader transition in electrical discharges. Physics of Plasmas, 2014. V.21, №11, Article 113502. DOI: 10.1063/1.4901284.
Nikishkin I.I., Kholodov R.I. J. Nano-Electron. Phys. 2021. V.13, №5, 05022. DOI: https://doi.org/10.21272/jnep.13(5).05022
Chygin V. Experimental studies and numerical simulations of corona discharge plasma. Proceedings of the Shevchenko Scientific Society. L., 2011. Vol. 8: Physical Collection. pp. 257-285. http://dspace.nbuv.gov.ua/handle/123456789/75290 [in Ukrainian]
Tertyshny K. A. Computer modeling and visualization of plasma oscillations during plasmon generation in a cold plasma model using the particle-in-cell method. Radioelectronics and youth in the 21st century: materials of the 28th International Youth Forum, April 16–18, 2024. Kharkiv: KhNURE, 2024. Vol. 2. Pp. 129–121. DOI: https://doi.org/10.30837/IYF.ASCTREDB.2024.119. [in Ukrainian]
Shuaibov O. K., Hrytsak R. V., Minya O. I., Malinina A. A., Bilak Yu. Yu., Gomoki Z. T. Spectroscopic Diagnostics Of Overstressed Nanosecond Discharge Plasma Between Zinc Electrodes In Air And Nitrogen / Journal Of Physical Studies 2022. v. 26, No. 2, 2501 (8p.). https://doi.org/10.30970/jps.26.2501
Shuaibov O.K., Minya A. I., Malinina A. A., Gritsak R. V., Malinin A. N., Bilak Yu. Yu., and Vatrala M. I. Characteristics and Plasma Parameters of the Overstressed Nanosecond Discharge in Air between an Aluminum Electrode and a Chalcopyrite Electrode (СuInSe2) / Surface Engineering and Applied Electrochemistry, 2022. Vol. 58, No. 4, pp. 369–385 DOI: 10.3103/S1068375522040123
Bondar I.I., Suran V.V., Minya O.Y., Shuaibov O.K., Bilak Yu.Yu., Shevera I.V., Malinina A.O., Krasilinets V.N. Synthesis of surface structures during laser-stimulated evaporation of a copper sulfate solution in distilled water. Ukr. J. Phys. 2023. 68, No. 2, 138. https://doi.org/10.15407/ujpe68.2.138.
O.K. Shuaibov, O.Y. Minya, R.V. Hrytsak, Yu.Yu. Bilak, A.O. Malinina, Z.T. Homoki, M.M. Pop, O.M. Konoplyov Gas Discharge Source of Synchronous Flows of UV Radiation and Silver Sulphide Microstructures Physics And Chemistry Of Solid State 2023. V. 24, No. 3, pp. 417-421 DOI: https://doi.org/10.15330/pcss.24.3.417-421
O.K. Shuaibov, R.V. Hrytsak, O.Y. Minya, A.O. Malinina, I.V. Shevera, Yu.Yu. Bilak, Z.T. Homoki Conditions for pulsed gas-discharge synthesis of thin tungsten oxide films from a plasma mixture of air with tungsten vapors / Physics And Chemistry Of Solid State, Vasyl Stefanyk Precarpathian National University Section: Physics 2024. V.25, No.4, pp. 684-688. https://doi.org/10.15330/pcss.25.4.684-688
А.Г. Загородній, А.І. Момот. Вступ до кінетичної теорії плазми. Інститут теоретичної фізики ім.М.М. Боголюбова НАН України. Київ. Наукова думка, 2015. 458 с.
A.V. Kirichok, V.M. Kuklin, A.V. Pryimak, A.G. Zagorodny Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma. Physics of Plasmas, 2015. 22 (9). DOI:10.1063/1.4931058
О.П.Чорний, В.К.Типюк, Н.М.Істоміна та ін. Математичні методи моделювання. – Кременчук: ПП Щербатих О.В., 2016. – 234 с.: іл. https://pdf.lib.vntu.edu.ua/books/2019/Chornij_2016_234.pdf
Квєтний Р. Н., Богач І. В., Бойко О. Р., Софина О. Ю., Шушура О.М. Комп’ютерне моделювання систем та процесів. Методи обчислень. Частина 1 : навчальний посібник; за заг. ред. Р.Н. Квєтного. – Вінниця: ВНТУ, 2012. – 193 с. http://kist.ntu.edu.ua/textPhD/kmsp.pdf
M. A. Lieberman, A. J. Lichtenberg Principles of Plasma Discharges and Materials Processing. Wiley-Interscience, 2005. 794 p. DOI:10.1002/0471724254
C. K. Birdsall, A. B. Langdon Plasma Physics via Computer Simulation. McGraw-Hill. 1991. https://doi.org/10.1016/0010-4655(86)90240-7.
J. P. Verboncoeur, C. K. Birdsall, A. B. Langdon Simultaneous Potential and Circuit Solution for 1D Bounded Plasma Particle Simulation Codes. Physics of Plasmas, 1995. Volume 2, Issue 5, pages 2015–2025. DOI:10.1063/1.871281
J. Luque, U. Ebert. High-speed video and modelling of visible streamer propagation in air. Journal of Physics D: Applied Physics, 2014. Volume 47, Issue 44, Article 445205. DOI: 10.1088/0022-3727/47/44/445205
Y.P. Raizer Gas Discharge Physics. Springer-Verlag, New York. 1991. http://dx.doi.org/10.1007/978-3-642-61247-3
А.V. Gurevich, A.P. Khazanov, M.N. Shneider Physics of Gas Discharges: CRC Press. 1997
M. Capitelli, L. Chiavarini, G. S. Ocampo Plasma Chemistry: Springer, 2000. ISBN: 978-3-642-08428-8.
J. Ferreira, J. P. Loureiro Plasma chemistry and kinetics in atmospheric pressure air discharges". Plasma Sources Science and Technology. 2003. V.12, №3, p. S58-S64. DOI:10.1039/C8CP02473A
Z. Donkó. Kinetic theory of plasmas: From electron kinetics to transport. Journal of Physics: Conference Series, 2011. Volume 306, Issue 1, Article 012001. DOI: 10.1088/1742-6596/306/1/012001.
Hagelaar G., Pitchford L. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for Plasma Sources Science & Technology. 2005. 14(4). DOI:10.1088/0963-0252/14/4/011.
G.V. Naidis. Streamer-to-leader transition in electrical discharges. Physics of Plasmas, 2014. V.21, №11, Article 113502. DOI: 10.1063/1.4901284.
Nikishkin I.I., Kholodov R.I. J. Nano-Electron. Phys. 2021. V.13, №5, 05022. DOI: https://doi.org/10.21272/jnep.13(5).05022
В. Чигінь Експериментальнi дослiдження i чисельнi моделювання плазми коронного розряду. Праці Наукового товариства ім. Шевченка. Л., 2011. Т. 8: Фізичний збірник. С. 257-285. http://dspace.nbuv.gov.ua/handle/123456789/75290
Тертишний К. А. Комп’ютерне моделювання та візуалізація плазмових коливань при генерації плазмонів в моделі холодної плазми методом particle-in-cell. Радіоелектроніка та молодь у XXI столітті : матеріали 28-го Міжнар. молодіж. форуму, 16–18 квіт. 2024 р. Харків: ХНУРЕ, 2024. Т.2. С. 129–121. DOI: https://doi.org/10.30837/IYF.ASCTREDB.2024.119.
Shuaibov O. K., Hrytsak R. V., Minya O. I., Malinina A. A., Bilak Yu. Yu., Gomoki Z. T. Spectroscopic Diagnostics Of Overstressed Nanosecond Discharge Plasma Between Zinc Electrodes In Air And Nitrogen / Journal Of Physical Studies 2022. v. 26, No. 2, 2501 (8p.). https://doi.org/10.30970/jps.26.2501
Shuaibov O.K., Minya A. I., Malinina A. A., Gritsak R. V., Malinin A. N., Bilak Yu. Yu., and Vatrala M. I. Characteristics and Plasma Parameters of the Overstressed Nanosecond Discharge in Air between an Aluminum Electrode and a Chalcopyrite Electrode (СuInSe2) / Surface Engineering and Applied Electrochemistry, 2022. Vol. 58, No. 4, pp. 369–385 DOI: 10.3103/S1068375522040123
Bondar I.I., Suran V.V., Minya O.Y., Shuaibov O.K., Bilak Yu.Yu., Shevera I.V., Malinina A.O., Krasilinets V.N. Synthesis of surface structures during laser-stimulated evaporation of a copper sulfate solution in distilled water. Ukr. J. Phys. 2023. 68, No. 2, 138. https://doi.org/10.15407/ujpe68.2.138.
O.K. Shuaibov, O.Y. Minya, R.V. Hrytsak, Yu.Yu. Bilak, A.O. Malinina, Z.T. Homoki, M.M. Pop, O.M. Konoplyov Gas Discharge Source of Synchronous Flows of UV Radiation and Silver Sulphide Microstructures Physics And Chemistry Of Solid State 2023. V. 24, No. 3, pp. 417-421 DOI: https://doi.org/10.15330/pcss.24.3.417-421
O.K. Shuaibov, R.V. Hrytsak, O.Y. Minya, A.O. Malinina, I.V. Shevera, Yu.Yu. Bilak, Z.T. Homoki Conditions for pulsed gas-discharge synthesis of thin tungsten oxide films from a plasma mixture of air with tungsten vapors / Physics And Chemistry Of Solid State, Vasyl Stefanyk Precarpathian National University Section: Physics 2024. V.25, No.4, pp. 684-688. https://doi.org/10.15330/pcss.25.4.684-688