Networks virtualization as an approach to optimization of computer networks
Abstract
The purpose of the work is to study the existing methods of optimizing computer networks and analyze the approach of virtualization of networks as a means of optimization. The object of the work is the process of optimizing computer networks, and the subject is models, methods and information technologies that are used to optimize networks.
Research methods: simulation and mathematical modeling methods, optimization methods, control methods, neural network methods.
As a result of the work, an analysis of computer network optimization approaches and methods was carried out. Among them, optimization methods of network topology, methods of nonlinear optimization of parameters and functional dependencies, which describe the behavior and state of the network, are highlighted. It is noted that the implementation of machine learning methods in the optimization model of computer networks is promising due to their ability to generalize, classify and predict possible changes in the network structure to improve its efficiency. The focus is on a virtualization approach that allows you to abstract from network topology, optimize resource usage, improve security, simplify management, and ensure high availability. Such models can be adapted to specific requirements and constraints. Among the existing directions of virtualization, the virtualization of network functions, the construction of software-configured networks and knowledge-defined networks are considered in detail.
Conclusions: it is proposed to combine the virtualization approach with machine learning methods, namely to build a knowledge-based network optimization model based on graph neural networks. This approach will make it possible to combine the complex relationship between topology, routing and incoming network traffic and obtain accurate estimates of the distribution of delays and losses in the network.
Downloads
References
/References
Bashar, Mesfer. Optimization in Computer Networks and Cybersecurity: Ensuring Efficiency and Safety. Global J Technol Optim, 14 (2023): 333. DOI: 10.37421/2229-8711.2023.14.333.
Network Virtualization: Optimization and Reliability: website. URL: https://www.tnsolutions.it/en/network-virtualization-optimization-and-reliability (дата звернення 1.06.2024)
Buhyl B.A., Lavriv O.A., Beshley M.I., Chervenets V.V. Optimization methods for telecommunications networks physical and logical structures. Bulletin of Lviv Polytechnic. Series of Radio Electronics and Telecommunication. 2013. № 766. Pp. 78-83. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/5107/12bugillavrivbeshleychervenec.pdf (дата звернення: 01.06.2024)
Ai, Hua, Fan, Yuhong, Zhang, Jilei and Ghafoor, Kayhan Zrar. Topology optimization of computer communication network based on improved genetic algorithm. Journal of Intelligent Systems, vol. 31, no. 1, 2022, pp. 651-659. https://doi.org/10.1515/jisys-2022-0050
Hadi Rezazad. Computer network optimization. Wiley Interdisciplinary Reviews: Computational Statistics, 2011. 3(1), pp. 34 – 46. DOI: 10.1002/wics.135
Koliechkina L.M., Nahirna A.M. A mathematical model of multi-criteria optimization on the set of combinations under the construction of computer networks. Mathematical machines and systems. 2016. № 4. Pp. 68-75.
Haitham Afifi, Sabrina Pochaba, Andreas Boltres, Dominic Laniewski and others. Machine Learning with Computer Networks: Techniques, Datasets and Models. IEEE Access, 2024. 52 p. DOI: 10.1109/ACCESS.2024.3384460.
Ke Liang, Mitchel Myers. Machine Learning Application in the Routing in Computer Networks. ArXiv abs/2104.01946, 2021. URL: https://arxiv.org/pdf/2104.01946 (дата звернення: 25.05.2024)
What is network virtualization? Everything you need to know: website. URL: https://www.techtarget.com/searchnetworking/What-is-network-virtualization-Everything-you-need-to-know (дата звернення: 25.05.2024)
Network Functions Virtualization – Introductory White Paper. SDN and OpenFlow World Congress, 2012. URL: https://portal.etsi.org/NFV/NFV_White_Paper.pdf (дата звернення: 25.05.2024)
Palahin V.V., Yevtushenko I.O., Hozhyi O.O. Virtualization as an environment of realization of network functions. Bulletin of Cherkasy State Technological University, 2021. № 2. Pp. 31-38. DOI: 10.24025/2306-4412.2.2021.234703.
What is Software-Defined Networking? IBM : website. URL: https://www.ibm.com/topics/sdn (дата звернення: 10.05.2024).
Comprehensive Survey on Knowledge-Defined Networking. MDPI : website. URL: https://www.mdpi.com/2673-4001/4/3/25 (дата звернення: 10.05.2024).
NeMo: an application’s interface to intent-based networks : website. URL: http://nemo-project.net/ (дата звернення: 15.05.2024).
Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-Aparicio. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. In Proceedings of the 2019 ACM Symposium on SDN Research (SOSR '19). Association for Computing Machinery, New York, USA, 2019. Pp. 140–151. DOI: https://doi.org/10.1145/3314148.3314357
K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros and A. Cabellos-Aparicio. RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN. IEEE Journal on Selected Areas in Communications. 2020. V. 38, № 10. P. 2260–2270. DOI: https://doi.org/10.1109/jsac.2020.3000405.
Bashar, Mesfer. Optimization in Computer Networks and Cybersecurity: Ensuring Efficiency and Safety. Global J Technol Optim, 14 (2023): 333. DOI: 10.37421/2229-8711.2023.14.333.
Network Virtualization: Optimization and Reliability: website. URL: https://www.tnsolutions.it/en/network-virtualization-optimization-and-reliability (дата звернення 1.06.2024)
Б. А. Бугиль, О. А. Лаврів, М. І. Бешлей, В. В. Червенець Методи оптимізації фізичної та логічної структур телекомунікаційних мереж. Вісник Національного університету "Львівська політехніка". Радіоелектроніка та телекомунікації. 2013. № 766. С. 78-83. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/5107/12bugillavrivbeshleychervenec.pdf (дата звернення: 01.06.2024)
Ai, Hua, Fan, Yuhong, Zhang, Jilei and Ghafoor, Kayhan Zrar. Topology optimization of computer communication network based on improved genetic algorithm. Journal of Intelligent Systems, vol. 31, no. 1, 2022, pp. 651-659. https://doi.org/10.1515/jisys-2022-0050
Hadi Rezazad. Computer network optimization. Wiley Interdisciplinary Reviews: Computational Statistics, 2011. 3(1), pp. 34 – 46. DOI: 10.1002/wics.135
Л.М. Колєчкіна, А.М. Нагірна. Математична модель багатокритеріальної оптимізації на множині сполучень при побудові комп’ютерних мереж. Математичні машини і системи. 2016. № 4. С. 68-75.
Haitham Afifi, Sabrina Pochaba, Andreas Boltres, Dominic Laniewski and others. Machine Learning with Computer Networks: Techniques, Datasets and Models. IEEE Access, 2024. 52 p. DOI: 10.1109/ACCESS.2024.3384460.
Ke Liang, Mitchel Myers. Machine Learning Application in the Routing in Computer Networks. ArXiv abs/2104.01946, 2021. URL: https://arxiv.org/pdf/2104.01946 (дата звернення: 25.05.2024)
What is network virtualization? Everything you need to know: website. URL: https://www.techtarget.com/searchnetworking/What-is-network-virtualization-Everything-you-need-to-know (дата звернення: 25.05.2024)
Network Functions Virtualization – Introductory White Paper. SDN and OpenFlow World Congress, 2012. URL: https://portal.etsi.org/NFV/NFV_White_Paper.pdf (дата звернення: 25.05.2024)
В.В. Палагін, І.О. Євтушенко, О.О. Гожий. Віртуалізаця як середовище реалізації мережевих функцій. Вісник Черкаського державного технологічного університету, 2021. №2. С. 31-38. DOI: 10.24025/2306-4412.2.2021.234703.
What is Software-Defined Networking? IBM : website. URL: https://www.ibm.com/topics/sdn (дата звернення: 10.05.2024).
Comprehensive Survey on Knowledge-Defined Networking. MDPI : website. URL: https://www.mdpi.com/2673-4001/4/3/25 (дата звернення: 10.05.2024).
NeMo: an application’s interface to intent-based networks : website. URL: http://nemo-project.net/ (дата звернення: 15.05.2024).
Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-Aparicio. Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN. In Proceedings of the 2019 ACM Symposium on SDN Research (SOSR '19). Association for Computing Machinery, New York, USA, 2019. Pp. 140–151. DOI: https://doi.org/10.1145/3314148.3314357
K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros and A. Cabellos-Aparicio. RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN. IEEE Journal on Selected Areas in Communications. 2020. V. 38, № 10. P. 2260–2270. DOI: https://doi.org/10.1109/jsac.2020.3000405.