Mathematical models and approaches in simulation of RRS-based laser sensor system

Keywords: laser, sensor, retroreflective sheeting, specklometry, simulation modeling

Abstract

The article is devoted to the research of mathematical models and approaches in simulation of laser sensor systems based on retroreflective sheeting (RRS) usage. The subject of the study is the mathematical model of the research object - the processes of propagation of a light in the medium and its transformation on retroreflectors with further analysis of the reflected radiation, which, being modulated by interaction with objects in the system, carries information about the state of the system. Overview of existing studies has been made. The analysis of existing approaches to simulation methods has been carried out, as well as the analysis of existing models. Common elements of models applicable in different fields and contexts of such systems have been determined. The scientific methods of research are outlined, such as comparative analysis while studying similar systems, conducting physical experiments in laboratory conditions with a prototype of a computerized detection system for observing phenomena in the system, their systematization and description, synthesis of a mathematical model based on the obtained data, creation of a computer model and, after its verification, and conducting computer experiments. The typical research schema is proposed, suggesting such main stages in simulation modeling of the laser sensing systems based on RRS as generation of the laser emission light field structure, interaction of the light field with environment, transformation of the APD inside the RRS, finding the APD in the reception zone, converting the resulting APD into a photocurrent, finding dependencies between parameters, evaluating detection efficiency, system optimization. The analysis of strong points of different approaches has been made. Some major aspects to be considered when choosing the appropriate method have been pointed out. The guiding principles for the general modeling of such systems illustrated with original concrete examples of such models verified in practice are presented.

Downloads

Author Biographies

Kostiantyn Bondarenko, V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine

Ph.D student

Gregory Dolya, V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine

Doctor of Technical Sciences, professor, Department of Theoretical and Applied Systems Engineering, Faculty of Computer Science

References

/

References

Measures R. M. Laser Remote Sensing: Fundamentals and Applications. Malabar, FL: Krieger Publishing, 1992. URL: http://www.krieger-publishing.com/Titles/LthruO/STACKmno/stackmno_33.html

Tetsuo Fukuchi, Tatsuo Shiina. Industrial Applications of Laser Remote Sensing. Bentham Science Publishers, 2012. URL: https://doi.org/10.2174/97816080534071120101

Korpel, A. Acousto-Optics, Second Edition; Technology & Engineering, CRC Press, 1996. URL: https://www.academia.edu/8400584/Acousto-optics

Magdich, L.N. Acoustooptic Devices and Their Applications; Technology & Engineering, CRC Press, 1989. URL: https://books.google.com.ua/books/about/Acoustooptic_Devices_and_Their_Applicati.html?id=DPCNu9hQuA4C&redir_esc=y

Sirohi, R.S., Ed. Speckle Metrology; Technology & Engineering, CRC Press, 1993. URL: https://www.routledge.com/Speckle-Metrology/Sirohi/p/book/9780824789329

M. Kowalczyk, Pluta M. , Jabczynski J. K., and Szyjer M. Laser speckle velocimetry // Optical Velocimetry, Proc. SPIE 2729, 1996. Pp. 139–145. URL: https://spie.org/Publications/Proceedings/Paper/10.1117/12.233000

Raffel M., Willert C., Kompenhans J. Particle Image Velocimetry. A Practical Guide. Springer, 1998. URL: https://link.springer.com/book/10.1007/978-3-662-03637-2

Dolya G. M., Lytvynova O. S. Modeling of fluctuations of laser radiation scattered on the reflector array in a turbulent atmosphere // Laser and Fiber-Optical Networks Modeling (LFNM), 2011. Pp. 108-111. URL: https://doi.org/10.1109/LFNM.2011.6145015

Lloyd J. A brief history of retroreflective sign face sheet materials. The principles of retroreflection. REMA publications, 2008. URL: http://www.rema.org.uk/pub/pdf/history-retroreflective-materials.pdf

Migletz J., Fish J. K., Grahm J. L. Roadway Delineation Practices Handbook. US Department of transportation, Federal highway administration, 1994. URL: https://safety.fhwa.dot.gov/ped_bike/docs/rdwydelin.pdf

Héricz D., Sarkadi T., Erdei G., Lazuech T., Lenk S., Koppa P. Simulation of small- and wide-angle scattering properties of glass-bead retroreflectors // Applied Optics Vol. 56, Issue 14, 2017. Pp. 3969-3976. URL: http://dx.doi.org/10.1364/AO.56.003969

Dolya G. M., Lytvynova O. S Modeling of speckle metrology technique of detecting the medium acoustic oscillations // Bulletin of V.N. Karazin Kharkiv National University, series “Mathematical modelling. Information technology. Automated control systems”, 31(1), 2016. 38-46 p. [in Russian] URL: https://periodicals.karazin.ua/mia/article/view/6807/6299

Wahlstrand J. K., Jhajj N., Rosenthal E. W., Zahedpour S., Milchberg H. M. Direct imaging of the acoustic waves generated by femtosecond filaments in air // Opt. Lett. 39, 2014. 1290-1293 с. URL: https://doi.org/10.1364/OL.39.001290

Naidoo S. The development of thermoplastic road marking material stadart. University of Pretoria, 2016. 302 c. URL: https://repository.up.ac.za/handle/2263/61319

Kilaru M., Yang J., Heikenfeld J. Advanced characterization of electrowetting retroreflectors // OSA, OPTICS EXPRESS, Vol. 17, No. 20, 2009. 17563-17569 c. URL: https://doi.org/10.1364/OE.17.017563

Murali Krishna Kilaru. Electrowetting Switchable Retroreflectors: a dissertation for the degree of doctor of philosophy (Ph.D.), University of Cincinnati, 2009. 148 c. URL: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=ucin1282054545&disposition=inline

Anderson J., Massaro R., Lewis L., Moyers R., Wilkins J. Lidar-activated Phosphors and Infrared Retro-Reflectors: Emerging Target Materials for Calibration and Control // Photogrammetric Engineering & Remote Sensing, 2010. 875-879 c. URL: https://www.researchgate.net/profile/Richard-Massaro/publication/228747484_Lidar-activated_Phosphors_and_Infrared_Retro-Reflectors_Emerging_Target_Materials_for_Calibration_and_Control/links/00b7d5208e69f0a972000000/Lidar-activated-Phosphors-and-Infrared-Retro-Reflectors-Emerging-Target-Materials-for-Calibration-and-Control.pdf

Dolya G. M., Lytvynova O. S. Modeling the Method of Laser Doppler Speckle-Velocimetry for Flat Objects with Retroreflective Surface // Asian Engineering Review Vol.4, No. 2, 2017. 7-13 c. URL: https://doi.org/10.20448/journal.508.2017.42.7.13

Dolya G., Bondarenko K. Laser Doppler Velocimetry of Rotating Cylinder with Retroreflecting Surface // Asian Engineering Review, 5(1), 2018. 1-7 pp. URL: https://doi.org/10.20448/journal.508.2018.51.1.7

Dolya G.N., Chudovskaya E.S., Kochin A.V. Mathematical modeling of diffraction of laser radiation on a vibrating surface with a reflective coating // Eastern European journal of advanced technologies 1/6 (37), 2009. 59-62 с. [in Russian] URL: https://doi.org/10.15587/1729-4061.2009.3174

Ishikawa K., Asada K., Tamayama K., Ueda M., Optical Vibration Monitoring System by Means of CCD Camera and Retro-Reflector // The Review of Laser Engineering Vol.30, No.2, 2002 91-93. URL: https://www.jstage.jst.go.jp/article/lsj/30/2/30_2_91/_pdf

Dolya G., Bondarenko K., Laser detector of acoustic oscillations utilizing a retroreflective surface with glass beads // EESA, Vol. 3, No. 11(63), 2020. 7-16 p. URL: https://archive.eesa-journal.com/index.php/eesa/article/view/30

Siegman, Anthony E. Lasers. Revised ed. edition. University Science Books, 1986. 1283 p. URL: https://uscibooks.aip.org/books/lasers/

Kryzhanivska T.V., Boytsova I.A. Synopsis of lectures on the discipline "Numerical methods". Odesa, 2013. – 152 с. [ in Ukrainian ] URL:http://eprints.library.odeku.edu.ua/id/eprint/711/1/KryzhanivskaTV_BoitsovaIA_Chyselni_Metody_KL_2013.pdf

Feldman L.P. Numerical methods in computer science. - Textbook. К., 2006. – 480с.[in Ukrainian] URL: http://library.kre.dp.ua/Books/2-4%20kurs/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B8%20%D1%96%20%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%20%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D1%8C/%D0%A4%D0%B5%D0%BB%D1%8C%D0%B4%D0%BC%D0%B0%D0%BD_%D0%A7%D0%B8%D1%81%D0%B5%D0%BB%D1%8C%D0%BD%D1%96_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8_%D0%B2_%D1%96%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%B8%D1%86%D1%96_2007.pdf

Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (7th expanded ed.). Cambridge: Cambridge University Press. 1999. URL: https://www.worldcat.org/title/1151058062

M. Charnotskii. Comparison of four techniques for turbulent phase screens simulation. J. Opt. Soc. Am. A, 37(5):738–747, May 2020. URL: https://doi.org/10.1364/JOSAA.385754

Giarola A.J., Billeter T.R., Electroacoustic deflection of a coherent light beam // Proc. IEEE 51, #8, 1150, 1963. URL: https://doi.org/10.1109/PROC.1963.2463

Dolya G., Bondarenko K. Model of laser radiation transformation upon retroreflection from glass beads based surface // East European Scientific Journal, #5(45), 2019. 10-20 p. URL: https://eesa-journal.com/wp-content/uploads/EESA_may1.pdf

Goodmam J.W. Introduction to Fourier Optics., New York: W. H. Freeman, 2017. 546 p. URL: https://www.worldcat.org/title/introduction-to-fourier-optics/oclc/958780856

H.L. Kononchuk, V.M. Prokopets, V.V. Stukalenko Introduction to Fourier Optics: A Study Guide. - Kyiv: Publishing and printing center "Kyiv University", 2009. – 320 p.[ in Ukrainian ] URL:http://exp.phys.univ.kiev.ua/ua/Study/Lib/Navch_posibnyky/NP%20-%20Fure%20optyka%20-%20Kononchuk.pdf

Fedorov E.E., Nechyporenko O.V., Utkina T.Yu., Korpan Ya.V. Models and methods of computer systems for visual image recognition: monograph. – Cherkasy: ChDTU, 2021. – 482 p. [in Ukrainian] URL: https://er.chdtu.edu.ua/bitstream/ChSTU/3502/1/mono_FEE.pdf

Kroese, D. P.; Taimre, T.; Botev, Z.I. Handbook of Monte Carlo Methods. New York: John Wiley & Sons. 2011 p. 772. URL: https://www.wiley.com/en-au/Handbook+of+Monte+Carlo+Methods-p-9780470177938

Rouaud M. Probability, Statistics and Estimation. 2013, p 191. URL: http://www.incertitudes.fr/book.pdf

Bilogurova G.V., Samoilenko M.I. Mathematical programming: Synopsis of lectures. – Kharkiv: KhNAMG, 2009. – 72 p. [in Ukrainian] URL: https://core.ac.uk/download/pdf/11322845.pdf

Published
2022-12-26
How to Cite
Bondarenko, K., & Dolya, G. (2022). Mathematical models and approaches in simulation of RRS-based laser sensor system. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 56, 6-20. https://doi.org/10.26565/2304-6201-2022-56-01
Section
Статті