Simulation of hydroelastic vibrations of structure elements using finite and boundary element methods

  • Ivan Vierushkin Інститут проблем машинобудування ім. А. М. Підгорного НАНУ, вул. Пожарського, 2/10, Харків, 61046, Україна http://orcid.org/0000-0002-3837-5567
  • Yehor Kononenko Інститут проблем машинобудування ім. А. М. Підгорного НАНУ, вул. Пожарського, 2/10, Харків, 61046, Україна https://orcid.org/0000-0001-6221-3608
Keywords: finite and boundary element method, ideal incompressible fluid, hydroelastic vibrations, hypersingular integral equation

Abstract

For studying the vibration frequencies and modes of structural elements that operate in interaction with a liquid, an approach has been proposed. The approach is based on coupled usage of finite and boundary element methods. For description the motion of both structural elements and the fluid, the method deals with basic relations of the continuous medium mechanics. In the study of structural elements, the linear relations between stresses and strains have been accepted, i.e. elastic elements have been considered. The relations between the components of stress tensors and strain rates are used to describe the fluid motion. The fluid is considered to be ideal and incompressible. The Laplace equations have been obtained considering the fluid pressure on the wetted surfaces of structural elements. The corresponding boundary conditions have been formulated for one-sided and two-sided contact of a structural element with a liquid. Integral equations for pressure determination have been received. In the case of a two-sided contact of a structural element with a liquid, a hypersingular integral equation has been obtained. If the contact with the liquid is one-sided, then the indicated singular integral equations have logarithmic singularities and Cauchy-type singularities. In the presence of axial symmetry of the structure, these hypersingular integral equations are being reduced to one-dimensional ones. A round elastic plate under different fastening conditions has been considered. Modes of free oscillations of this structural element have been received; these ones serve as basic functions in the study of plate oscillations taking into account the added liquid masses. The finite element method was used. A one-dimensional hypersingular integral equation is implemented to find the fluid pressure on the plate. The frequencies and oscillation forms of the plate have been obtained with considering the attached masses of the liquid. Accuracy and reliability of the proposed method have been ascertained.

Downloads

Author Biographies

Ivan Vierushkin, Інститут проблем машинобудування ім. А. М. Підгорного НАНУ, вул. Пожарського, 2/10, Харків, 61046, Україна

аспірант

Yehor Kononenko, Інститут проблем машинобудування ім. А. М. Підгорного НАНУ, вул. Пожарського, 2/10, Харків, 61046, Україна

аспірант

References

/

References

Eseleva E.V., Gnitko V.I., Strelnikova E.A. Natural vibrations of pressure vessels when interacting with liquid. Problems of Mechanical Engineering, vol. 9, no 1, pp.105 – 118, 2006. URL: http://journals.uran.ua/jme/issue/archive [in Russian]

Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers / T. Medvedovskaya, E. Strelnikova, K. Medvedyeva // Intern. J. Eng. and Advanced Research Technology (IJEART). – 2015. – Vol. 1, No 1. – P. 45 - 50. – DOI 10.13140/RG.2.1.3527.4961 URL: https://www.researchgate.net/publication/282868308_

Sheludko GA, Shupikov OM, Smetankina NV, Ugrimov SV Applied adaptive search.- Kharkiv: Eye URL: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis

Gnitko, V., Naumenko, V., Rozova, L., Strelnikova, E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International, 17(1), pp.75-87, 2016 URL: https://www.researchgate.net/publication/301655238

Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. // International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 URL: https://www.researchgate.net/publication/280728146

Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering Vol.3, No.1, 2018, pp.15-52 URL: http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf

Ganchin E.V., Rzhevskaya I.E., Strelnikova E.A. Investigation of the dynamic characteristics of impeller blades of Kaplan hydraulic turbines when interacting with a liquid. Bulletin of Kharkiv National University, no. 847, pp.79-86, 2009. URL: http://mia.univer.kharkov.ua/11/30078.pdf [in Russian]

Degtyarev K. Strelnikova E. Sheludko G. Computer modeling of wind turbine blades with optimal parameters. Bulletin of V.N. Karazin Kharkiv National University. Series: Mathematical modeling. Information Technology. Automated control systems, no. 19, pp.81 – 86, 2012. URL: http://mia.univer.kharkov.ua/19/30251.pdf [in Russian]

Ishmuratov F.Z., Kuznetsov A.G., Mosunov V.A. Application of the Ritz polynomial method for calculating the characteristics of dynamic aeroelasticity taking into account gyroscopic forces. Uchenye zapiski CAGI, vol. 48, no. 6, pp.64 – 74, 2017. URL: http://www.tsagi.ru/institute/publications/memoirs/archive_annotations/ [in Russian]

Strelnikova E.A., Hypersingular integral equations in two-dimensional boundary value problems for the Laplace equation and the Lame equations, Dopovidi NAN Ukraini. no. 3, pp.27-31, 2001. URL: https://www.dopovidi-nanu.org.ua/uk/archive

Gandel Yu.V. Introduction to methods for calculating singular and hypersingular integrals. - Kharkov: Ed. Kharkiv national university, 92 p., 2010. URL: http://ekhnuir.univer.kharkov.ua/handle/123456789/247

Segerlind L. Applied finite element method - M .: Mir- 392 p., 1979. URL: https://studizba.com/files/show/djvu/1936-1-segerlind-l--primenenie-metoda.html [in Russian]

Brebbia, C.A, Telles, J.C.F & Wrobel, L.C., Boundary element techniques: theory and applications in engineering. Springer-Verlag: Berlin and New York, 1984. URL: https://studizba.com/files/show/djvu/1932-1-brebbiya-k-telles-zh-vroubel-l--metody.html

Sedov L.I. Mechanics of a continuous medium. Volume 1 M .: Nauka, 1970., 492 p. URL: http://lib.brsu.by/sites/default/files/books

Kantor B.Ya. Strelnikova E.A. Hypersingular integral equations in problems of continuum mechanics. Kharkov: Novoe Slovo, 252 p., 2005. URL: https://www.twirpx.com/file/1394980/

Gunther N.M. Potential theory and its application to the main problems of mathematical physics. –M .: Gostekhteorizdat, 1953. - 416 p. URL: http://publ.lib.ru/ARCHIVES/G/GYUNTER_Nikolay_Maksimovich/_Gyunter_N.M..html#0003

M. K. Kwak. Axisymmetric vibration of circular plates in contact with fluid. Journal ofSound and Vibration (1991) 146(3), 381-389. URL: https://www.sciencedirect.com/science/article/abs/pii/0022460X9190696H

Karaiev A., Strelnikova E. Axisymmetric polyharmonic spline approximation in the dual reciprocity method ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, pp. e201800339. DOI: 10.1002/zamm.201800339 URL: https://scholar.google.com/citations?user=5d87MvoAAAAJ&hl=de

Karaiev A. Singular integrals in axisymmetric problems of elastostatics / A. Karaiev, E. Strelnikova //International Journal of Modeling, Simulation, and Scientific Computing., 2020, Vol. 11, № 1, 2050003 . DOI: 10.1142/S1793962320500038. URL: https://www.worldscientific.com/doi/10.1142/S1793962320500038

V. Gnitko, K. Degtyariov, A. Karaiev, and E. Strelnikova, “Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity“ WIT Transactions on Engineering Sciences, Vol. 122, WIT Press, pp.13-25, 2019. DOI: 10.2495/BE410021 URL: https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/122/37070

Strelnikova E., Kriutchenko D., Gnitko V. and Degtyarev K. Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Engineering Analysis with Boundary Elements, 2020, Vol. 111, p. 78-87. Available from: doi: 10.1016/j.enganabound.2019.10.008 URL: https://www.sciencedirect.com/science/article/abs/pii/S0955799719306149

Published
2021-03-29
How to Cite
Vierushkin, I., & Kononenko, Y. (2021). Simulation of hydroelastic vibrations of structure elements using finite and boundary element methods. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 49, 16-28. https://doi.org/10.26565/2304-6201-2021-49-02
Section
Статті