Evolution of memes
Abstract
The paper considers the evolution of a population of individuals, where each one initially possesses a certain number of strategies the memory of which does not exceed a depth of 2. All individuals randomly enter into competition in pairs at each stage of evolution. A random pair of individuals conducts a competition between pairs of all their randomly selected strategies when they are interacting. These strategies compete in pairs according to the iterated prisoner's dilemma. In such struggle, strategies earn evolutionary advantage points according to a given payout matrix. The strategy with the most points wins. Two strategies come into this game twice to negate an impact of the first move. The first game starts by one strategy, the second game starts by another one. The winnings are determined by the outcome of both these games. After this competition the winning strategy of one individual replaces the corresponding losing strategy of another individual. Thus, there is an exchange of more "successful" strategies between individuals with the loss of lost strategies. The evolution of the population of such individuals was carried out until the stage of stationary state. There were established patterns of changes in basic properties of strategies of average individual during evolution. It is shown that in the process of evolution the aggression of an individual increases, tenting to the maximum value. The stationary set of strategies of an individual consists of strategies of maximum memory depth and complexity with a certain number of primitive strategies. The complexity and memory depth of an individual's strategies turns out to be evolutionary beneficial. In the stationary state the number of primitive strategies in an individual depends on their initial distribution to individuals. The paper considers two initial distributions, where the first corresponds to the equal probability of any strategy in the distribution by individuals, and the seconds corresponds to equally probable choice in terms of memory depth. The variety of strategies in the process of evolution decreases significantly, making up only a small part of the initial strategies present in the population.
Downloads
References
/References
M. A. Nowak, and R. M.May, "Evolutionary games and spatial chaos",Nature, vol. 359, no. 6398, pp. 826–29, 1992. https://doi.org/10.1038/359826a0
R. Axelrod, The evolution of cooperation. New York: Basic Books, 1984. http://www.eleutera.org/wp-content/uploads/2015/07/The-Evolution-of-Cooperation.pdf
M. A. Nowak and R. Highfield, SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. New York: Free Press, 2012. https://www.amazon.com/SuperCooperators-Altruism-Evolution-Other-Succeed/dp/1451626630
G. Szab’o and C. Hauert, "Evolutionary prisoner’s dilemma games with voluntary participation",Phys. Rev. E., vol. 66, no. 062903, 2002. https://doi.org/10.1103/physreve.66.062903
C. Hauert, A. Traulsen, H. Brandt, M.A. Nowak, and K. Sigmund, "Via freedom to coercion: The emergence of costly punishment",Science, vol. 316, no. 5833, pp. 1905–7, 2007. https://dx.doi.org/10.1126%2Fscience.1141588
A. Traulsen and J. C. Claussen, "Similarity based cooperation and spatial segregation",Phys. Rev. E., vol. 70, no. 046128, 2004. https://doi.org/10.1126/science.1141588
A. Szolnoki and G. Szab’o, "Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner’s dilemma games",EPL, vol. 77, no. 30004, 2007. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.7492&rep=rep1&type=pdf
M. Perc and A. Szolnoki, "Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game",Phys. Rev. E., vol. 77, no. 011904, 2008. https://link.aps.org/doi/10.1103/PhysRevE.77.011904
H. X. Yang, W. X. Wang, Z. X. Wu, Y. C. Lai, and B. H. Wang, "Diversity-optimized cooperation on complex networks",Phys. Rev. E., vol. 79, no. 056107, 2009. https://link.aps.org/doi/10.1103/PhysRevE.79.056107
J. M. Pacheco, A. Traulsen, and M. A. Nowak, "Coevolution of strategy and structure in complex networks with dynamical linking",Phys. Rev. Lett., vol. 97, no. 258103, 2006. https://link.aps.org/doi/10.1103/PhysRevLett.97.258103
H. Ohtsuki, M. A. Nowak, and J. M. Pacheco, "Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs",Phys. Rev. Lett., vol. 98, no. 108106, 2007. . https://link.aps.org/doi/10.1103/PhysRevLett.98.108106
S. Meloni, A. Buscarino, L. Fortuna, M. Frasca, J. G’omez-Garde’nes, V. Latora, and Y. Moreno, "Effects of mobility in a population of prisoner’s dilemma players",Phys. Rev. E., vol. 79, no. 067101, 2009. https://link.aps.org/doi/10.1103/PhysRevE.79.067101
L. L. Jiang, W. X. Wang, Y. C. Lai, and B. H. Wang, "Role of adaptive migration in promoting cooperation in spatial games",Phys. Rev. E., vol 81, no. 036108, pp 1–6, 2010. https://link.aps.org/doi/10.1103/PhysRevE.81.036108
F. Fu and M. A. Nowak, "Global migration can lead to stronger spatial selection than local migration",J. Stat. Phys., vol. 151. pp. 637–53, 2013. https://projects.iq.harvard.edu/files/ped/files/jstatphys13_0.pdf
F. Fu, C. E. Tarnita, N. A. Christakis, L. Wang, D. G. Rand, and M. A. Nowak, "Evolution of in-group favoritism",Sci. Rep., vol. 2, no. 460, 2012. https://www.nature.com/articles/srep00460
Z. Wang, A. Szolnoki, and M. Perc, "Optimal interdependence between networks for the evolution of cooperation",Sci. Rep., vol. 3, no. 2470, 2013. . https://www.nature.com/articles/srep02470
V. M. Kuklin, A. V. Priymak, and V. V. Yanovsky, "The influence of memory on the evolution of populations," Visnik of the Kharkiv National University named after V. N. Karazin, series "Mathematical Modelling. Information technology. Automation of the control system", vol. 29, pp. 41–66, 2016. [in Russian] https://periodicals.karazin.ua/mia/article/view/6557/6065
V. V. Yanovsky, A. V. Priymak, and V. M. Kuklin, "Memory and evolution of communities," Visnik of the Kharkiv National University named after V. N. Karazin, series "Mathematical Modelling. Information technology. Automation of the control system", vol. 35, pp. 38–60, 2017. [in Russian] https://periodicals.karazin.ua/mia/article/view/9841/9365
V. V. Yanovsky and A. V. Priymak, "Evolution of strategy communities with sources available," Visnik of the Kharkiv National University named after V. N. Karazin, series "Mathematical Modelling. Information technology. Automation of the control system", vol. 36, pp. 68–84, 2017. [in Russian] https://periodicals.karazin.ua/mia/article/view/10098/9626
V. V. Porichansky, A. V. Priymak, and V. V. Yanovsky, "Alternative evolution of strategies with memory," Visnik of the Kharkiv National University named after V. N. Karazin, series "Mathematical Modelling. Information technology. Automation of the control system", vol. 44, pp. 74–87, 2019. [in Russian] . https://periodicals.karazin.ua/mia/article/view/15775/14613
Brandt H., Hauert C., Sigmund K. Punishment and reputation in spatial public goods games. Proc. R. Soc. Lond. B. 2003. Vol. 270. Issue 1519. P. 1099–1104. https://doi.org/10.1098/rspb.2003.2336
Nowak M.A., May R.M. Evolutionary games and spatial chaos. Nature. 1992. Vol. 359. Issue 6398. P. 826–829. https://doi.org/10.1038/359826a0
Axelrod R. The evolution of cooperation. New York: Basic Books, 1984. 223 p. http://www.eleutera.org/wp-content/uploads/2015/07/The-Evolution-of-Cooperation.pdf
Nowak M. A., Highfield R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. New York: Free Press, 2012. 352 p. https://www.amazon.com/SuperCooperators-Altruism-Evolution-Other-Succeed/dp/1451626630
Szab’o G., Hauert C. Evolutionary prisoner’s dilemma games with voluntary participation. Phys. Rev. E. 2002. Vol. 66. Issue 6 (062903). P. 1–4. https://doi.org/10.1103/physreve.66.062903
Hauert C., Traulsen A., Brandt H., Nowak M. A., Sigmund K. Via freedom to coercion: The emergence of costly punishment. Science. 2007. Vol. 316. Issue 5833. P. 1905–1907. https://dx.doi.org/10.1126%2Fscience.1141588
Traulsen A., Claussen J. C. Similarity based cooperation and spatial segregation. Phys. Rev. E. 2004. Vol. 70. Issue 4 (046128). P. 1–8. https://doi.org/10.1126/science.1141588
Szolnoki A., Szab’o G. Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner’s dilemma games. EPL. 2007. Vol. 77 (30004). P 1–5. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.7492&rep=rep1&type=pdf
Perc M., Szolnoki A. Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E. 2008. Vol. 77. Issue 1 (011904). P. 1–5. https://link.aps.org/doi/10.1103/PhysRevE.77.011904
Yang H. X., Wang W. X., Wu Z. X., Lai Y. C., Wang B. H. Diversity-optimized cooperation on complex networks. Phys. Rev. E. 2009. Vol. 79. Issue 5 (056107). P. 1–7. https://link.aps.org/doi/10.1103/PhysRevE.79.056107
Pacheco J. M., Traulsen A., Nowak M. A. Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 2006. Vol. 97. Issue 25 (258103). P. 1–4. https://link.aps.org/doi/10.1103/PhysRevLett.97.258103
Ohtsuki H., Nowak M. A., Pacheco J. M. Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett. 2007. Vol. 98. Issue 10 (108106). P. 1–8. https://link.aps.org/doi/10.1103/PhysRevLett.98.108106
Meloni S., Buscarino A., Fortuna L., Frasca M., G’omez-Garde’nes J., Latora V., Moreno Y. Effects of mobility in a population of prisoner’s dilemma players. Phys. Rev. E. 2009. Vol. 79. Issue 6 (067101). P. 1–4. https://link.aps.org/doi/10.1103/PhysRevE.79.067101
Jiang L. L., Wang W. X., Lai Y. C., Wang B. H. Role of adaptive migration in promoting cooperation in spatial games. Phys. Rev. E. 2010. Vol 81. Issue 3 (036108). P. 1–6. https://link.aps.org/doi/10.1103/PhysRevE.81.036108
Fu F., Nowak M. A. Global migration can lead to stronger spatial selection than local migration. J. Stat. Phys. 2013. Vol. 151. P. 637–653. https://projects.iq.harvard.edu/files/ped/files/jstatphys13_0.pdf
Fu F., Tarnita C. E., Christakis N. A., Wang L., Rand D. G., Nowak M. A. Evolution of in-group favoritism. Sci. Rep. 2012. Vol. 2. Issue 460. https://www.nature.com/articles/srep00460
Wang Z., Szolnoki A., Perc M. Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 2013. Vol. 3. Issue 2470. P. 1–7. https://www.nature.com/articles/srep02470
Куклин В. М., Приймак А. В., Яновский В. В. Влияние памяти на эволюцию популяций. Вісник Харківського національного університету імені В. Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2016. Вып. 29. С. 41–66 https://periodicals.karazin.ua/mia/article/view/6557/6065
Яновский В. В, Приймак А. В., Куклин В. М. Память и эволюция сообществ. Вісник Харківського національного університету імені В. Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2017. Вып. 35. С. 38–60. https://periodicals.karazin.ua/mia/article/view/9841/9365
Яновский В. В., Приймак А. В. Эволюция сообществ стратегий при наличии источников. Вісник Харківського національного університету імені В. Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2017. Вып. 36. С. 68–84. https://periodicals.karazin.ua/mia/article/view/10098/9626
Поричанский В. В., Приймак А. В., Яновский В. В. Альтернативная эволюция стратегий с памятью. Вісник Харківського національного університету імені В. Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2019. Вып. 44. С. 74–87. https://periodicals.karazin.ua/mia/article/view/15775/14613