Hardware-software complex for the study of sedimentation processes in technical and biological suspensions of aggregating micro- and nanoparticles
Abstract
A new hardware-software complex is proposed for automatic registration, processing and analysis of sedimentation curves in technical or biological suspensions of aggregating micro- or nanoparticles to assess the aging index of the industrial fluids, the state of microbiological suspensions, or medical diagnostics. The complex includes a centrifuge to create an inhomogeneous field of forces that accelerate the settling process. Registration of the sedimentation curves as the height of the column of aggregates in the lower part of the sedimentation tube is carried out using optical sensors. The curves can be taken repeatedly with or without the addition of various substances. The proposed method was tested, and the correspondence of the values of the 1-hour index of erythrocyte sedimentation rate and the 10-minutes centrifuge test was confirmed on a large data set. A three-phase mathematical model of the suspension is developed. This model more accurately describes the dynamics of sedimentation processes compared to the two-phase model. Computer code for the curves processing and calculation of the indices characterizing the state of the suspension is developed. Based on this model a new index is proposed to evaluate the state of suspension. It has advantages because it does not require bringing the test samples to the same concentrations. Using the mathematical model you can determine and the rate of aggregation of suspension particles. As a result a rapid assessment of the aggregation ability of suspension which characterizes the "age" of technical suspension is possible. An example of the use of the complex to assess the indicator of aggregation of red blood cells in order to diagnose the presence of food or drug allergies is given.
Downloads
References
/References
M. Gad-el-Hak, MEMS Introduction and fundamentals. The MEMS Handbook. N.-Y.: Taylor & Francis Group, 228 p., 2006.
R. Ghodssi, and P. Lin (eds.), MEMS Materials and Processes Handbook. N.-Y.: Springer, 321 p., 2011.
W. Liou, and Y. Fang, Microfluid Mechanics: Principles and Modeling (Nanoscience and Technology), N.-Y.: McGraw-Hill Education Publ., 198 p., 2005.
G.E. Karniadakis, and A. Beskok, and N. Aluru, Microflows and nanoflows: Fundamentals and simulation, Interdisc. Appl. Math. Series, vol.29. N.-Y.: Springer-Science, 295 p., 2005.
A. Noy, and H.G. Park, and F. Fornasiero, and J.K. Holt, and C.P. Grigoropoulos, and O. Bakajin, “Nanofluidics in carbon nanotubes. Nano Тoday.” vol. 2, N 6, pp. 22-29, 2007.
V.A. Cherevko, and N.N. Kizilova, “Complex flows of immiscible microfluids and nanofluids with velocity slip bounary conditions.” Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics, vol. 183, O. Fesenko, L. Yatsenko (eds.). N.-Y.: Springer, pp. 207–230, 2017.
L.V. Batyuk, and N.N. Kizilova, and V.P. Berest, “Investigation of Antiradiation and Anticancer Efficiency of Nanodiamonds on Rat Erythrocytes.” IEEE 7th Intern. Conf. “Nanomaterials: Application & Properties”, Odessa, Ukraine, 04NB23, 2017.
H.K. Kanagala, “Modeling of Particle Agglomeration in Nanofluids. PhD Thesis.” Lehigh University Press, 47 p., 2013.
W.C. Thaker, and J.W. Lavelle, “Stability of settling of suspended sediments.” Phys. Fluids, vol. 21, pp. 291-292, 1978.
О.М. Datsok, and Ye.N. Zholonsky, and N.N. Kizilova, “Analysis of erythrocyte sedimentation in a non-uniform force field.” Electronics and Communication, №15, pp.145-149, 2002. [in Russian]
N. Kizilova, “Stability of erythrocyte sedimentation in a constant magnetic field.” Fluid Dynamics, vol.24, N6, pp.878-881, 1989.
I. Kushner, “The acute phase reactans and the erythrocyte sedimentation rate.” In: Textbook of rheumatology/Eds. W. Kelly, E.Harris, S. Ruddy, C. Sledge. Philadelphia: W.B. Saunders, pp. 668—676, 1981.
E. S. Losev, “Modeling the sedimentation of aggregating particles.” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, N3, pp. 71-75, 1983.
О.М. Datsok, and Ye.N. Zholonsky, and N.N. Kizilova, “Two-phase model of the erythrocytes sedimentation in a non-uniform force field”, Visnyk Kharkov Polytechnic University, №135, pp.61-66, 2002. [in Russian]
V.A. Cherevko, and N.N. Kizilova, “Gravitational sedimentation of erythrocytes: experiments and theoretical model.” Vestnik of KhNU, ser. “Mathematics, applied mathematics, mechanics”, №875, pp.80-94, 2009. [in Russian]
N.N. Kizilova, and V.A. Cherevko, “Mathematical models of aggregation of biological macro- and nanoparticles.”Mechanics. Scientific research and educational development, Gomel, vol.8, pp. 92-99, 2014. [in Russian]
V.A. Baranets, and N.N. Kizilova, “Discrete modelling of aggregation and sedimentation of micro- and nanoparticles in suspensions.” Bulletin of V.N. Karazin Kharkiv National University, series “Mathematical modelling. Information technology. Automated control systems”, vol. 40, pp. 4-14, 2018. [in Russian]
Gad-el-Hak M. MEMS Introduction and fundamentals. The MEMS Handbook. N.-Y.: Taylor & Francis Group, 2006. 228 p.
Ghodssi R., and Lin P. (eds.). MEMS Materials and Processes Handbook. N.-Y.: Springer, 2011. 321 p.
Liou W., Fang Y. Microfluid Mechanics: Principles and Modeling (Nanoscience and Technology). N.-Y.: McGraw-Hill Education Publ., 2005. 198 p.
Karniadakis G.E., Beskok A., Aluru N. Microflows and nanoflows: Fundamentals and simulation. Interdisc. Appl. Math. Series, vol.29. – N.-Y.: Springer-Science, 2005. 295 p.
Noy A., Park H.G., Fornasiero F., Holt J.K., Grigoropoulos C.P., Bakajin O. Nanofluidics in carbon nanotubes. Nano Тoday. 2007. v. 2, N 6. P. 22-29.
Cherevko V., Kizilova N. Complex flows of immiscible microfluids and nanofluids with velocity slip bounary conditions. Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics. vol. 183. O. Fesenko, L. Yatsenko (eds.). N.-Y.: Springer. .2017. P. 207–230.
Batyuk L.V., Kizilova N.N., Berest V.P. Investigation of Antiradiation and Anticancer Efficiency of Nanodiamonds on Rat Erythrocytes. IEEE 7th Intern. Conf. “Nanomaterials: Application & Properties. Odessa, Ukraine. 2017. - 04NB23.
Kanagala H. K. Modeling of Particle Agglomeration in Nanofluids. PhD Thesis. Lehigh University Press, 2013. 47 p.
Thaker W.C., Lavelle J.W. Stability of settling of suspended sediments. Phys. Fluids. 1978. v. 21. P. 291-292.
Дацок О.М., Жолонский Е.Н., Кизилова Н.Н. Анализ оседания эритроцитов в неоднородном поле сил. Электроника и связь. 2002. №15. С.145-149.
Kizilova N. Stability of erythrocyte sedimentation in a constant magnetic field. Fluid Dynamics. 1989. v.24, N6. P.878-881.
Kushner I. The acute phase reactans and the erythrocyte sedimentation rate. In: Textbook of rheumatology/Eds. W. Kelly, E.Harris, S. Ruddy, C. Sledge. Philadelphia: W.B. Saunders, 1981. 668–676.
Losev E. S. Modeling the sedimentation of aggregating particles. Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza. 1983. N3. P. 71-75.
Дацок О.М., Жолонский Е.Н., Кизилова Н.Н. Двухфазная модель оседания эритроцитов в неоднородном поле сил. Вестник ХГПУ. 2002. №135. С.61-66.
Кизилова Н.Н., Черевко В.А. Гравитационная седиментация эритроцитов: эксперименты и теоретическая модель. Вестник ХНУ. Сер. Математика, прикладная математика, механика. 2009. №875. С.80-94.
Кизилова Н.Н., Черевко В.А. Математические модели агрегации биологических макро- и наночастиц. Механика. Научные исследования и учебно-методические разработки. Сб. статей. Гомель. 2014. Вып.8. С.92-99.
Баранець В. А., Кизилова Н. Н. Дискретное моделирование агрегации и оседания микро- и наночастиц в суспензиях. Вісник Харківського національного університету імені В.Н. Каразіна, сер. «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2018. т.40. С.4-14.