On mathematical models for describing parametric and modulation instabilities
Abstract
The development of modulation instability of a finite amplitude wave is considered. A modified S-theory, previously developed in the works of V. Ye. Zakharov, was used to describe unstable modes. It is noted that near the instability threshold a self-similar spatial wave structure can form at different scales. The dynamics of the instability is analyzed in a model of a high intensity practically undamped oceanic wave, the mechanism of the formation of anomalous amplitude waves is shown. The modes of excitation of parametric instabilities are discussed. It is noted, that there is a similarity in the development of modulation and parametric instabilities, however there are also differences related to the nature of the dynamics of the wave packets of unstable perturbations. The nature of parametric instabilities is associated with the presence of a high-frequency, spatially homogeneous component of one or more parameters of the medium. Since the wave number of such HF oscillations is zero, or extremely small, in comparison with the characteristic lengths of the system, the spectrum of unstable disturbances is also located symmetrically, resembling the unstable spectrum of modulation instability. However, the growing perturbations practically do not move in space. Far from the threshold of parametric instability, a strong small-scale modulation of environmental parameters can form, which often takes on the character of a process with aggravation. The formation of self-similar spatial structures in the developed convection of a thin liquid or gas layer due to the development of modulation instability. The toroidal convection vortices generate poloidal vortices of large scale - the effect of a hydrodynamic dynamo and the experimental results of the investigation self-similar structures on the graphite are presented. The nature of self-consistent parametric instabilities is similar to the processes of modulation instability.
Downloads
References
/References
Lighhill M.J. “Contribution to the theory of waves in nonlinear dispersive system”. J.Inst. Math. Appl.,Vol.1, No.2. P.269-306, 1965.
Silin V.P. “Parametric resonance in plasma”, JETP.,Vol. 48,No.6, 1965, P. 1679-1691.
Zakharov V.E. “Stability of nonlinear waves in dispersive media”, J Teor. Prikl.Fiz, Vol. 51, P. 668-671, 1966,
Benjamin T.B., Feir J.E. “The disintegration of wave trains on deep water”, J. Fluid Mech,. Vol.27, P. 417-430, 1967.
Zakharov V.E., Lvov V.S., Starobinets S.S. “Turbulence of spin waves beyond the threshold of their parametric excitation”, UFN, - T.114, No.4, pp.609-654. 1974.[in Russian]
Kuklin V.M. “The role of the dislipacy of energy in formulating large-scale non-linear structures in the new medium means”, UPhZ. Revew, V. 1, № 1, pp. 49-81, 2004, [in Ukrainian]
Kuklina OV, Kirichok A.V., Kuklin V.M. “Dynamics of the formation of self-similar structures in nonlinear wave dissipative media with a non-decay spectrum”, The Journal of Kharkiv National University, physical series “Nuclei, Particles, Fields”, №541. Iss.4 (16), pp. 73–76, 2001. [in Russian]
Kuklin V.M., Kirichok A.V., Kuklina O.V. “On the mechanisms of formation of self-similar structures in a nonequilibrium continuous medium”, Problems of Atomic Science and Technology. Ser. Plasma electronics and new acceleration methods. № 1, p. 222–224, 2000. [in Russian]
Kuklin V. М. Selected chapters (theoretical physics). Kh.:VN Karazin KNU, 2018. 224 P. [in Russian]
Akhmediev N., Korneev V. “Modulation instability and periodic solutions of the nonlinear Schrodinger equation”, Theoretical and Mathematical Physics 69 (2), 1089–1093, 1986.
Chabchoub A., Hoffmann N., Akhmediev N. “Rogue wave observation in a water wave tank”, Physical Review Letters, 106 (20), 204502, 2011.
McAllister M.I., Draycott S., Adcock T.A.A., Taylor P.H. and van den Bremetr, V.860. 10, pp. 767-786, February 2019.
Zakharov V.E.“Collapse of Langmuir Waves”, JETP. V. 62. № 5, P. 1745-1759, 1972. [in Russian]
Silin V.P. Parametric resonance in plasma, JETP. 1965. T. 48. p. 1679. [in Russian]
Silin V.P. Parametric effect of high power radiation on the plasma. M., Science, 287c. 1973. [in Russian]
Chernousenko V. V, Kuklin V.M., Panchenko I.P. The structure in nonequilibrium media. In book: The integrability and kinetic equations for solitons, AN USSR, ITPh. K. Nauk. Dumka. – С. 472. 1990.
Kuklin V.M., Sevidov S.M. “On the nonlinear theory of the stability of intense oscillations of a cold plasma”, Plasma Physics, V. 14, № 10, P. 1180-1185, 1988. [in Russian]
Zagorodnii, AG, Kirichok, AV, Kuklin, VM, “One-Dimensional Models of the Modulation Instability of Intense Langmuir Oscillations in a Plasma Based on the Zakharov and Silin Equations”, UFN.,V. 186, №7, p. 743–762, 2016. [in Russian]
Zakharov B.E. et al., Kinetics of Three-Dimensional Langmuir Collapse, JETP, T. 96, № 4, p. 591,1989. [in Russian]
Lighhill M.J. Contribution to the theory of waves in nonlinear dispersive system. J.Inst. Math. Appl, 1965. Vol.1, No.2. P.269–306.
Silin V.P. Parametric resonance in plasma. JETP. 1965. Vol. 48, No.6. P. 1679–1691.
Zakharov V.E. Stability of nonlinear waves in dispersive media. J Teor. Prikl.Fiz. 1966. Vol. 51. P. 668–671.
Benjamin T.B., Feir J.E. The disintegration of wave trains on deep water. J. Fluid Mech. 1967. Vol.27. P. 417–430.
Захаров В.Е., Львов В.С., Старобинец С.С. Турбулентность спиновых волн за порогом их параметрического возбуждения :УФН. 1974. T.114, No.4. C.609–654.
Куклин В.М. Роль поглинання та дисипації енергії у формуванні просторових нелінійних структур у нерівноважних середовищах. УФЖ. Огляди. 2004. Т. 1, № 1. С. 49–81.
Куклина О.В., Киричок А.В., Куклин В.М. Динамика формирования самоподобных структур в нелинейных волновых диссипативных средах с нераспадным спектром. The Journal of Kharkiv National University, physical series “Nuclei, Particles, Fields”. 2001. №541, Iss.4(16). Р.73–76.
Куклин В.М., Киричок А.В., Куклина O.В. О механизмах образования самоподобных структур в неравновесной сплошной среде . Вопросы атомной науки и техники. (ВАНТ). - Сер. Плазменная электроника и новые методы ускорения. 2000. № 1. С. 222–224.
Куклин В. М. Избранные главы (теоретическая физика). Х.: ХНУ имени В. Н. Каразина, 2018. 224с.
Akhmediev N., Korneev V. Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theoretical and Mathematical Physics. 69 (2). 1986. Р. 1089–1093.
Chabchoub A., Hoffmann N., Akhmediev N. Rogue wave observation in a water wave tank. Physical Review Letters. 106 (20) (2011) 204502.
McAllister M.I., Draycott S., Adcock T.A.A., Taylor P.H. and van den Bremetr//V.860. 10 February. 2019. Р. 767–786.
Захаров В.Е. Коллапс ленгмюровских волн: ЖЭТФ, 1972. Т. 62, № 5. С. 1745–1759.
Силин В.П. Параметрический резонанс в плазме: ЖЭТФ, 1965. Т. 48. 1679 с.
Силин В.П. Параметрическое воздействие излучения большой мощности на плазму. М.: Наука, 1973. 287 c.
Chernousenko V. V, Kuklin V.M., Panchenko I.P. The structure in nonequilibrium media. In book: The integrability and kinetic equations for solitons. AN USSR, ITPh. K. Nauk. Dumka. 1990. 472 с.
Куклин В.М., Севидов С.М. К нелинейной теории устойчивости интенсивных колебаний холодной плазмы. Физика плазмы. 1988. Т. 14, № 10. С. 1180–1185.
Загородний А. Г., Киричок А. В., Куклин В. М. Одномерные модели модуляционной неустойчивости интенсивных ленгмюровских колебаний в плазме на основе уравнений Захарова и Силина. УФН. 2016. Т. 186, №7. С. 743–762.
Захаров B.E. и др. Кинетика трехмерного ленгмюровского коллапса: ЖЭТФ, 1989. Т. 96, № 4. 591 с.