The discrete simulation of aggregation and sedimentation of micro- and nanoparticles in suspensions
Abstract
The aggregation of particles in technical nanofluids is investigated as a mechanism of their aging. It have been established that nanofluid viscosity increases, and thermal conductivity decreases due to aggregation. The region of particle-free fluid is formed during the sedimentation in the upper part of the tube (zone I). Zone IIa, filled with sedimenting single particles and aggregates of a small number of particles is located next. Zone IIb filled with the large aggregates is followed. Next zone IIc consists of the large aggregates that form a porous framework. Bottom layer III consists of the compactly placed aggregates without a fluid. Dynamic curves H(t) obtained from the experiments make it possible to evaluate the developed theoretical models. A review of the known experimental data on the aggregation and sedimentation of various types of nanoparticles is presented and the available theoretical models that have shown significant differences between the theoretical and experimental sedimentation curves are reviewed. The discrete particle dynamics method which allows performing computer simulations with any geometry and location of the tube is used for numerical calculations. The results of calculations using theoretical and experimental data shows that the sedimentation is faster in the presence of sliding on the particle’s surfaces which is more evident in inclined tubes. With an increase in the inclination angle of the tube the sedimentation rate increases at , and at large angles it decreases immediately after the start of sedimentation. Thus the evaluation of nanofluid aging may be accelerated if the test is conducted in an inclined tube. A quantitative indicator of aging based on the nanoparticle sedimentation rate in a tube is proposed. A modification of the particle dynamics method which accounts for the second-order slide condition at the fluid-solid interface is proposed. Computer simulations of the sedimentation in straight and inclined tubes have been carried out. A correspondence of theory and experiment has been shown.
Downloads
References
/References
M. Gad-el-Hak, “MEMS Introduction and fundamentals. The MEMS Handbook.” N.-Y.: Taylor & Francis Group, 228 p., 2006.
R. Ghodssi, and P. Lin (eds.), “MEMS Materials and Processes Handbook.” N.-Y.: Springer, 321 p., 2011.
W Liou, and Y. Fang, “Microfluid Mechanics: Principles and Modeling (Nanoscience and Technology).” N.-Y.: McGraw-Hill Education Publ., 198 p., 2005.
F.E.H. Tay (ed.), “Microfluidics and BioMEMS Applications.” N.-Y.: Springer-Science, 217 p., 2002.
G.E. Karniadakis, and A. Beskok, and N. Aluru, “Microflows and nanoflows: Fundamentals and simulation.” Interdisc. Appl. Math. Series, vol.29. N.-Y.: Springer-Science, 295 p., 2005.
V.Cherevko, and N. Kizilova, “Complex flows of immiscible microfluids and nanofluids with velocity slip bounary conditions.” Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics, vol. 183. O. Fesenko, L. Yatsenko (eds.). N.-Y.: Springer, pp. 207–230, 2017.
C. Kleinstreuer, and Z. Xu, “Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. A review.” Fluids, v.1, pp.16-48, 2016.
H. K. Kanagala, “Modeling of Particle Agglomeration in Nanofluids. PhD Thesis.” Lehigh University Press, 47p. 2013.
G. S. Srivastava, “Effect of aggregation on thermal conductivity and viscosity of nanofluids.” Applied Nanosciences, v. 2, pp. 325–331, 2012.
W.Yu, and H. Xie, “A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications.” Journal of Nanomaterials, v. 2012. – 435873, 2012.
V.A. Cherevko, and N.N. Kizilova, “Gravitational sedimentation of erythrocytes: experiments and theoretical model.” Bulletin of V. Karazin Kharkiv National University, ser. “Mathematics, applied mathematics, mechanics”, №875, pp.80-94, 2009. [in Russian]
V.A. Baranets, N.N. Kizilova, “Review of the discrete models of the nanoparticle dynamics in suspensions.” Collect. Papers of ХVIII International Symposium Discrete Singularities Methods in Mathematical Physics Problems” (DSMMPH-2017), Kharkiv, pp. 39-42, 2017. [in Russian]
N. Kizilova, and L. Batyuk, and V. Cherevko, “Human red blood cell properties and sedimentation rate: a biomechanical study.” Biomechanics in Medicine and Biology. K. Arkusz, R. Bedzinski, T. Klekiel, S. Piszczatowski, eds. Springer Series Advances in Intelligent Systems and Computing, Vol.831, N.-Y.: Springer, pp. 3-22, 2019.
T. Phenrat, and N. Saleh, and K. Sirk, et al, “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.” Eenviron. Sci. Technol., v. 41, pp. 284-290, 2007.
J. Lu, and D. Liu, and X.Yang, et al, « Sedimentation of TiO2 nanoparticles in aqueous solutions: influence of pH, ionic strength, and adsorption of humic acid.” Desalinat. Water Treatment, v.57, N40, pp. 1-8, 2015.
S.J. Chung, and J.P. Leonard, and I. Nettleship, et al, “Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion.” Powder Technol., v. 194, pp. 75–80, 2009.
W. Jiang, and G. Ding, and H. Peng, and H. Hua, “Modeling of nanoparticles’ aggregation and sedimentation in nanofluid.” Current Appl. Phys., v. 10, pp. 934–941, 2010.
S. Ganguly, and S. Chakraborty, “Sedimentation of nanoparticles in nanoscale colloidal suspensions.” Phys. Lett., Ser. A, v. 375, pp. 2394–2399, 2011.
A. A. Markus, and J. R. Parsons, and E. W. M. Roex, et al, “Modeling aggregation and sedimentation of nanoparticles in the aquatic environment.” Sci. Total Envir., N 506–507, pp. 323–329, 2015.
B. J. Alder, and T. E. Wainwright, “Phase transition for a hard sphere system.” J. Chem. Phys., v. 27, pp.1208-1209, 1957.
E. Moeendarbary, and T.Y. Ng, and M. Zangeneh, “Particle dynamics: introduction, methodology and complex fluid applications - a review.” Intern. J. Appl. Mech., v.1, N4, pp. 737–763, 2009.
J. Rifkin, “XMD - Molecular Dynamics Program.” URL: http://xmd.sourceforge.net/doc/manual/xmd.html (Last accessed: 25.10.2018).
“LAMMPS Molecular Dynamics Simulator.” URL: https://lammps.sandia.gov/ (Last accessed: 17.11.2018).
P. Espanol, “Dissipative Particle Dynamics.” Handbook of Materials Modeling, Yip S. (ed.). Dordrecht: Springer, pp. 2503-2569, 2005.
R. Ravi, and V. Guruprasad, “Lennard-Jones fluid and diffusivity: validity of the hard-sphere model for diffusion in simple fluids and application to CO2.” Ind. Eng. Chem. Res., v.47, N4, pp. 1297–1303, 2008.
N.N. Kizilova, “Stability of erythrocyte sedimentation in a constant magnetic field.” Fluid Dynamics, v.24, N6, pp.878-881, 1989.
Gad-el-Hak M. MEMS Introduction and fundamentals. The MEMS Handbook. N.-Y.: Taylor & Francis Group, 2006. 228 p.
MEMS Materials and Processes Handbook, Ghodssi R., and Lin P. (eds.). – N.-Y.: Springer, 2011. 321 p.
Liou W., Fang Y. Microfluid Mechanics: Principles and Modeling (Nanoscience and Technology). N.-Y.: McGraw-Hill Education Publ., 2005. 198 p.
Microfluidics and BioMEMS Applications, Tay F.E.H. (ed.). N.-Y.: Springer-Science, 2002. 217 p.
Karniadakis G.E., Beskok A., Aluru N. Microflows and nanoflows: Fundamentals and simulation. Interdisc. Appl. Math. Series, vol.29. N.-Y.: Springer-Science, 2005. 295 p.
Cherevko V., Kizilova N. Complex flows of immiscible microfluids and nanofluids with velocity slip bounary conditions. Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics O. Fesenko, L. Yatsenko (eds.). N.-Y.: Springer. 2017. vol. 183. P. 207–230.
Kleinstreuer C., Xu Z. Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. A review.Fluids. 2016. v.1. P.16-48.
Kanagala H. K. Modeling of Particle Agglomeration in Nanofluids: PhD Thesis / Lehigh University Press, 2013. 47 p.
Srivastava G. S. Effect of aggregation on thermal conductivity and viscosity of nanofluids. Applied Nanosciences. 2012. v. 2. P. 325–331.
Yu W., Xie H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials. 2012. v. 2012. - 435873.
Кизилова Н.Н., Черевко В.А. Гравитационная седиментация эритроцитов: эксперименты и теоретическая модель. Вестник ХНУ. Сер. “Математика, прикладная математика, механика” – 2009. - №875. – С.80-94.
Баранец В.А., Кизилова Н.Н. Обзор дискретных моделей динамики наночистиц в суспензиях // Зб. праць ХVIII Міжнародного симпозіуму «Методи дискретних особливостей в задачах математичної фізики» (МДОЗМФ-2017). Харків. – 2017. – С. 39-42.
Kizilova N., Batyuk L., Cherevko V. Human red blood cell properties and sedimentation rate: a biomechanical study. Biomechanics in Medicine and Biology. K. Arkusz, R. Bedzinski, T. Klekiel, S. Piszczatowski, eds. Springer Series “Advances in Intelligent Systems and Computing” Vol.831, N.-Y.: Springer, 2019. P. 3-22.
Phenrat T., Saleh N., Sirk K., et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions // Eenviron. Sci. Technol. – 2007. – v. 41. – P. 284-290.
Lu J., Liu D., Yang X., et al. Sedimentation of TiO2 nanoparticles in aqueous solutions: influence of pH, ionic strength, and adsorption of humic acid. Desalinat. Water Treatment. 2015. v.57, N40. P. 1-8.
Chung S.J., Leonard J.P., Nettleship I., et al. Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion Powder Technol. – 2009. – v. 194. – P. 75–80.
Jiang W., Ding G., Peng H., Hua H. Modeling of nanoparticles’ aggregation and sedimentation in nanofluid Current Appl. Phys. 2010. – v. 10. – P. 934–941.
Ganguly S., Chakraborty S. Sedimentation of nanoparticles in nanoscale colloidal suspensions. Phys. Lett., Ser. A. 2011. v. 375. P. 2394–2399.
Markus A. A., Parsons J. R., Roex E. W. M., et al. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci. Total Envir. 2015. N 506–507. P. 323–329.
Alder B. J., Wainwright T. E. Phase transition for a hard sphere system. J. Chem. Phys. 1957. v. 27. P.1208-1209.
Moeendarbary E., Ng T.Y., Zangeneh M. Particle dynamics: introduction, methodology and complex fluid applications - a review. Intern. J. Appl. Mech. 2009. v.1, N4. P. 737–763.
Rifkin J. XMD - Molecular Dynamics Program. URL: http://xmd.sourceforge.net/doc/manual/xmd.html (дата обращения: 25.10.2018).
LAMMPS Molecular Dynamics Simulator URL: https://lammps.sandia.gov/ (дата обращения: 17.11.2018).
Espanol P. Dissipative Particle Dynamics // Handbook of Materials Modeling, Yip S. (ed.). –Dordrecht: Springer, 2005. – P. 2503-2569.
Ravi R., Guruprasad V. Lennard-Jones fluid and diffusivity: validity of the hard-sphere model for diffusion in simple fluids and application to CO2 Ind. Eng. Chem. Res. 2008. v.47, N4. P. 1297–1303.
Kizilova N.N. Stability of erythrocyte sedimentation in a constant magnetic field. Fluid Dynamics. 1989. v.24, N6. P.878-881.