Використання ентропійного підходу в системах моніторингу водних ресурсів
Анотація
Ефективне управління водними ресурсами можливе тільки при ефективно організованій системі моніторингу. З появою та розвитком теорії інформації концепція інформаційної ентропії знайшла своє місце і в галузі розробки мереж моніторингу вод. В статті проведено аналіз досліджень прикладів реалізації побудови систем моніторингу вод на основі ентропії. Продемонстровано використання різних методів теорії інформації та їх адаптації для використання в проектуванні систем моніторингу, при чому метою методів проектування є вибір пунктів моніторингу, які надають найбільше інформації для мережі моніторингу. Завдяки ретельному тестуванню теорія інформації виявилася надійним інструментом для оцінки та проектування оптимальних систем моніторингу вод. Узагальнено терміни ентропії, що використовувалися при побудові систем моніторингу вод. Розглянуто останні застосування концепції ентропії для проектів систем моніторингу води, які класифікуються на опади; стік і рівень води; якість води; вологість ґрунту та підземні води. Також висвітлено інтегрований метод проектування багатофакторних систем моніторингу. Перевага ентропійного підходу полягає в тому, що систему моніторингу водних ресурсів можливо побудувати на підставі контрольованої мережею інформації. Це може відрізнятися від заданої щільності станцій, запропонованої в керівних нормативних документах. Мережа може бути краще пристосована до конкретного використання або оптимізована для забезпечення найбільшої ефективності при щільності, нижчій від тієї, що пропонуються в нормативних рекомендаціях. Висвітлено проблеми, що стосуються оцінки оптимального дизайну мережі, зокрема, оптимальний дизайн мережі моніторингу можна побудувати на основі заданих критеріїв проектування, однак практичне застосування нової оптимальної мережі моніторингу рідко оцінюється в гідрологічній чи іншій моделі. Також, важливо обґрунтувати переваги проектування мереж на основі ентропії, щоб переконати осіб, які приймають рішення, у важливості застосування ентропійних підходів. Інша проблема полягає в тому, мережа може бути суб’єктивною, ґрунтуючись на виборі, зробленому під час обчислення ентропії, і обраному методі проектування, особливо коли в проекті враховуються додаткові цільові функції. Незважаючи на наявні джерела суб’єктивності, ентропійні методи залишаються одним із найбільш об’єктивних підходів до проектування мережі.
Завантаження
Посилання
Langbein, W. (1979) Overview of Conference on Hydrologic Data Networks. Water Resources Research. 15, 1867–1871. https://doi.org/10.1029/WR015i006p01867
Herschy, R. (1999) Hydrometry: Principles and Practice, 2nd ed.; John Wiley and Sons Ltd.: Chichester, UK,. https://scholar.google.com/scholar_lookup?title=Hydrometry:+Principles+and+Practice&author=Herschy,+R.W.&publication_year=1999
Boiten, W. Hydrometry; A.A. (2003) The Netherlands. https://doi.org/10.1201/9780203971093
Nemec, J.; Askew, A. (1986) Mean and variance in network-design philosophies. In Integrated Design of Hydrolog-ical Networks (Proceedings of the Budapest Symposium); Moss, M.E., Ed.; International Association of Hydrologi-cal Sciences Publication: Washington, DC, USA, pp. 123–131. https://scholar.google.com/
Rodda, J.; Langbein, W. (1969) Hydrological Network Design—Needs, Problems and Approaches; World Meteoro-logical Organization: Geneva, Switzerland. https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/984
World Meteorological Organization (1972) Casebook on Hydrological Network Design Practice; Langbein, W., Ed.; World Meteorological Organization: Geneva, Switzerland. https://scholar.google.com/
Davis, D.; Duckstein, L.; Krzysztofowicz, R. (1979) The Worth of Hydrologic Data for Nonoptimal Decision Mak-ing. Water Resources Research. 15, 1733–1742. https://doi.org/10.1029/WR015i006p01733
Bezsonnyi, V.; Ponomarenko, R.; Tretyakov, O.; Asotsky, V.; Kalynovskyi, A. (2021) Regarding the Choice of Com-posite Indicators of Ecological Safety of Water in the Basin of the Siversky Donets. Journal of Geology, Geogra-phy and Geoecology, 30, 622-631. https://doi.org/10.15421/112157
Bezsonnyi, V. L., Tretyakov, O. V., Plyatsuk, L. D., & Nekos, A. N. (2022). Entropy approach to assessment of the ecological state of a water course. Visnyk of V. N. Karazin Kharkiv National University Series «Еcоlogy», (27), 6-19. https://doi.org/10.26565/1992-4259-2022-27-01 [in Ukrainian]
Pilon, P.; Yuzyk, T.; Hale, R.; Day, T. (1996) Challenges Facing Surface Water Monitoring in Canada. Canadian Water Resources Journal. 21, 157–164. https://doi.org/10.4296/cwrj2102157
U.S. Geological Survey. (1999). Streamflow Information for the Next Century—A Plan for the National Streamflow Information Program of the U.S. Geological Survey; U.S. Geological Survey: Denver, CO, USA.
Mishra, A.K.; Coulibaly, P. (2009) Developments in Hydrometric Network Design: A Review. Rev. Geophys., 47. http://dx.doi.org/10.1029/2007RG000243
Chacon-hurtado, J.; Alfonso, L.; Solomatine, D. (2017) Rainfall and streamflow sensor network design: A review of applications, classification, and a proposed framework. Hydrology and Earth System Sciences. 21, 3071–3091. https://doi.org/10.5194/hess-21-3071-2017
Moss, M.E. (1982) Concepts and Techniques in Hydrological Network Design; World Meteorological Organiza-tion: Geneva, Switzerland. https://scholar.google.com/
Van der Made, J.; Schilperoort, T.; van der Schaaf, S.; Buishand, T.; Brouwer, G.; van Duyvenbooden, W.; Becin-sky, P. (1986) Design Aspects of Hydrological Networks; Commissie voor Hydrologisch Onderzoek TNO: The Hague, The Netherlands. http://resolver.tudelft.nl/uuid:4ab6e86e-b0e5-4571-bd20-241ac4489023
Pyrce, R.S. (2004) Review and Analysis of Stream Gauge Networks for the Ontario Stream Gauge Rehabilitation Project, 2nd ed.; Watershed Science Centre: Peterborough, ON, Canada. https://scholar.google.com/scholar_lookup?title=Review+and+Analysis+of+Stream+Gauge+Networks+for+the+Ontario+Stream+Gauge+Rehabilitation+Project&author=Pyrce,+R.S.&publication_year=2004
Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M. (2016) Water quality monitoring strategies—A review and fu-ture perspectives. Sci. Total Environ. 571, 1312–1329. http://dx.doi.org/10.1016/j.scitotenv.2016.06.235
Bezsonnyi, V., Tretyakov, O., Sherstyuk, M., & Nekos, A. (2022). Thermodynamic aspects of the systems approach in ecology. Visnyk of V. N. Karazin Kharkiv National University, Series “Geology. Geography. Ecology”, (57), 268-281. https://doi.org/10.26565/2410-7360-2022-57-20 [in Ukrainian]
Bezsonnyi, V.L. (2023) Methods of assessment of the ecological status of a water body based on the entropy-weighted index of water quality. Ecological Sciences: a scientific and practical journal. – № 2(47). – С. 44–48. https://doi.org/10.32846/2306-9716/2023.eco.2-47.7 [in Ukrainian]
Shannon, C. (1948) A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
Batty, M. (2010) Space, scale, and scaling in entropy maximizing. Geogr. Anal., 42, 395–421. http://dx.doi.org/10.1111/j.1538-4632.2010.00800.x
Singh, V. (2015) Entropy Theory in Hydrologic Science and Engineering; McGraw-Hill Education: New York, NY, USA https://www.accessengineeringlibrary.com/binary/mheaeworks/f8203430db41fd24/ee925d2b4e27bfd905d73664befe36228ea77a3c4ffc963ee700bbf01c450e7c/book-summary.pdf
Lathi, B. (1968) An Introduction to Random Signals and Communication Theory; International Textbook Compa-ny: Scranton, PA, USA. https://scholar.google.com/
Tribus, M. (1969) Rational Descriptions, Decisions and Designs; Irvine, T.F., Hartnett, J.P., Eds.; Pergamon Press: Oxford, UK,. https://scholar.google.com/
Krstanovic, P.; Singh, V. (1992) Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resour. Manag., 6, 279–293. http://dx.doi.org/10.1007/BF00872281
McGill, W. (1954) Multivariate information transmission. Psychometrika, 19, 97–116. http://dx.doi.org/10.1007/BF02289159
Watanabe, S. (1960) Information Theoretical Analysis of Multivariate Correlation. IBM J. Res. Dev., 4, 66–82. http://dx.doi.org/10.1147/rd.41.0066
Stosic, T.; Stosic, B.; Singh, V. (2017) Optimizing streamflow monitoring networks using joint permutation entropy. Journal of Hydrology., 552, 306–312. http://dx.doi.org/10.1016/j.jhydrol.2017.07.003
Mahjouri, N.; Kerachian, R. (2011) Revising river water quality monitoring networks using discrete entropy theo-ry: The Jajrood River experience. Environmental Monitoring and Assessment. 175, 291–302. http://dx.doi.org/10.1007/s10661-010-1512-6
Mahmoudi-Meimand, H.; Nazif, S.; Abbaspour, R.; Sabokbar, H. (2016) An algorithm for optimisation of a rain gauge network based on geostatistics and entropy concepts using GIS. J. Spat. Sci. 61, 233–252. https://doi.org/10.1080/14498596.2015.1030789
Hosseini, M.; Kerachian, R. (2017) A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks. Environmental Monitoring and Assessment., 189, 433. http://dx.doi.org/10.1007/s10661-017-6129-6
Masoumi, F.; Kerachian, R. (2010) Optimal redesign of groundwater quality monitoring networks: A case study. Environmental Monitoring and Assessment. 161, 247–257. http://dx.doi.org/10.1007/s10661-008-0742-3
Su, H.; You, G. (2014) Developing an entropy-based model of spatial information estimation and its application in the design of precipitation gauge networks. Journal of Hydrology, 519, 3316–3327. http://dx.doi.org/10.1016/j.jhydrol.2014.10.022
Alfonso, L.; Lobbrecht, A.; Price, R. (2010) Optimization of water level monitoring network in polder systems using information theory. Water Resources Research., 46. http://dx.doi.org/10.1029/2009WR008953
Memarzadeh, M.; Mahjouri, N.; Kerachian, R. (2013) Evaluating sampling locations in river water quality moni-toring networks: Application of dynamic factor analysis and discrete entropy theory. Environmental Earth Scienc-es., 70, 2577–2585. http://dx.doi.org/10.1007/s12665-013-2299-x
Mishra, A.; Coulibaly, P. (2010) Hydrometric Network Evaluation for Canadian Watersheds. Journal of Hydrolo-gy. 380, 420–437. http://dx.doi.org/10.1016/j.jhydrol.2009.11.015
Mishra, A.; Coulibaly, P. (2014) Variability in Canadian Seasonal Streamflow Information and Its Implication for Hydrometric Network Design. Journal of Hydrology. Eng. 19. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000971
Hosseini, M.; Kerachian, R. (2017) A data fusion-based methodology for optimal redesign of groundwater moni-toring networks. Journal of Hydrology. 552, 267–282. http://dx.doi.org/10.1016/j.jhydrol.2017.06.046
Alfonso, L.; Lobbrecht, A.; Price, R. (2010) Information theory-based approach for location of monitoring water level gauges in polders. Water Resources Research. 46. http://dx.doi.org/10.1029/2009WR008101
Alameddine, I.; Karmakar, S.; Qian, S.S.; Paerl, H.W.; Reckhow, K.H. (2013) Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework. Water Resources Research. 49, 6933–6945. http://dx.doi.org/10.1002/wrcr.20509
Keum, J.; Coulibaly, P. (2017) Sensitivity of Entropy Method to Time Series Length in Hydrometric Network De-sign. Journal of Hydrologic Engineering. 22. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001508
Mondal, N.C.; Singh, V.P. (2011) Evaluation of groundwater monitoring network of Kodaganar River basin from Southern India using entropy. Environmental Earth Sciences. 66, 1183–1193. http://dx.doi.org/10.1007/s12665-011-1326-z
Uddameri, V.; Andruss, T. A. (2014) GIS-based multi-criteria decision-making approach for establishing a region-al-scale groundwater monitoring. Environmental Earth Sciences. 71, 2617–2628. http://dx.doi.org/10.1007/s12665-013-2899-5
Wei, C.; Yeh, H.; Chen, Y. (2014) Spatiotemporal scaling effect on rainfall network design using entropy. Entropy. 16, 4626–4647. http://dx.doi.org/10.3390/e16084626
Li, C.; Singh, V.; Mishra, A. (2012) Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resources Research., 48. http://dx.doi.org/10.1029/2011WR011251
Werstuck, C.; Coulibaly, P. (2016) Hydrometric network design using dual entropy multi-objective optimization in the Ottawa River Basin. Hydrology Research. 48, 1–13. http://dx.doi.org/10.2166/nh.2016.344
Alfonso, L.; He, L.; Lobbrecht, A.; Price, R. (2013) Information theory applied to evaluate the discharge monitoring network of the Magdalena River. Journal of Hydroinformatics., 15, 211–228. http://dx.doi.org/10.2166/hydro.2012.066
Xu, H.; Xu, C.-Y.; Sælthun, N.; Xu, Y.; Zhou, B.; Chen, H. (2015) Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling—A case study of humid area in southern China. Journal of Hy-drology. 525, 138–151. http://dx.doi.org/10.1016/j.jhydrol.2015.03.034
Werstuck, C.; Coulibaly, P. (2017) Assessing Spatial Scale Effects on Hydrometric Network Design Using Entropy and Multi-Objective Methods. JAWRA Journal of the American Water Resources Association. https://doi.org/10.1111/1752-1688.12611
Keum, J.; Coulibaly, P. (2017) Information theory-based decision support system for integrated design of multi-variable hydrometric networks. Water Resources Research. 53, 6239–6259. http://dx.doi.org/10.1002/2016WR019981
Kornelsen, K.; Coulibaly, P. (2015) Design of an Optimal Soil Moisture Monitoring Network Using SMOS Re-trieved Soil Moisture. IEEE Trans. Geosci. Remote Sens. 53, 3950–3959. http://dx.doi.org/10.1109/TGRS.2014.2388451
Samuel, J.; Coulibaly, P.; Kollat, J. (2013) CRDEMO: Combined Regionalization and Dual Entropy-Multiobjective Optimization for Hydrometric Network Design. Water Resources Research. 49, 8070–8089. http://dx.doi.org/10.1002/2013WR014058
Leach, J.; Kornelsen, K.; Samuel, J.; Coulibaly, P. (2015) Hydrometric network design using streamflow signatures and indicators of hydrologic alteration. Journal of Hydrology. 529, 1350–1359. http://dx.doi.org/10.1016/j.jhydrol.2015.08.048
Alfonso, L.; Ridolfi, E.; Gaytan-Aguilar, S.; Napolitano, F.; Russo, F. (2014) Ensemble Entropy for Monitoring Network Design. Entropy, 16, 1365–1375. http://dx.doi.org/10.3390/e16031365
Leach, J.; Coulibaly, P.; Guo, Y. (2016) Entropy based groundwater monitoring network design considering spa-tial distribution of annual recharge. Advances in Water Resources. 96, 108–119. http://dx.doi.org/10.1016/j.advwatres.2016.07.006
Boroumand, A.; Rajaee, T. (2017) Discrete entropy theory for optimal redesigning of salinity monitoring network in San Francisco bay. Water Sci. Technol. Water Supply, 17, 606–612. http://dx.doi.org/10.2166/ws.2016.110
Santos, J.; Portela, M.; Pulido-Calvo, I. (2013) Dimensionality reduction in drought modelling. Hydrological Pro-cesses, 27, 1399–1410. http://dx.doi.org/10.1002/hyp.9300
Brunsell, N.A. (2010) A multiscale information theory approach to assess spatial-temporal variability of daily pre-cipitation. Journal of Hydrology, 385, 165–172. http://dx.doi.org/10.1016/j.jhydrol.2010.02.016
Lee, J. (2013) Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy, 15, 3419–3434. http://dx.doi.org/10.3390/e15093419
Lee, C.; Paik, K.; Yoo, D.; Kim, J. (2014) Efficient method for optimal placing of water quality monitoring stations for an ungauged basin. Journal of Environmental Management, 132, 24–31. http://dx.doi.org/10.1016/j.jenvman.2013.10.012
Fahle, M.; Hohenbrink, T.; Dietrich, O.; Lischeid, G. Temporal variability of the optimal monitoring setup assessed using information theory. (2015) Water Resources Research. 51, 7723–7743. http://dx.doi.org/10.1002/2015WR017137
Yakirevich, A.; Pachepsky, Y.; Gish, T.; Guber, A.; Kuznetsov, M.; Cady, R.; Nicholson, T. (2013) Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology. 501, 13–24. http://dx.doi.org/10.1016/j.jhydrol.2013.07.032
Mishra, A.; Özger, M.; Singh, V. (2009) An entropy-based investigation into the variability of precipitation. Jour-nal of Hydrology. 370, 139–154. http://dx.doi.org/10.1016/j.jhydrol.2009.03.006
Gong, W.; Yang, D.; Gupta, H.; Nearing, G. (2014) Estimating information entropy for hydrological data: One di-mensional case. Water Resources Research. 50, 5003–5018. http://dx.doi.org/10.1002/2014WR015874
Silva V.; da Silva V.; Belo Filho A.; Singh, V.; Almeida R.; da Silva B.; de Sousa, I.; de Holanda, R. (2017) Entropy theory for analysing water resources in northeastern region of Brazil. Hydrological Sciences Journal. 62, 1029–1038. https://doi.org/10.1080/02626667.2015.1099789
Ridolfi, E.; Montesarchio, V.; Russo, F.; Napolitano, F. (2011) An entropy approach for evaluating the maximum information content achievable by an urban rainfall network. Natural Hazards and Earth System Sciences. 11, 2075–2083. http://dx.doi.org/10.5194/nhess-11-2075-2011
Yeh, H.; Chen, Y.; Wei, C.; Chen, R. (2011) Entropy and kriging approach to rainfall network design. Paddy and Water Environment. 9, 343–355. http://dx.doi.org/10.1007/s10333-010-0247-x
Awadallah, A. (2012) Selecting optimum locations of rainfall stations using kriging and entropy. International Journal of Civil & Environmental Engineering., 12, 36–41. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bbfdd60b12caa37c5d5dbfca0039160dfe32299b
Ahmed, N.; Gokhale, D. (1989) Entropy expressions and their estimators for multivariate distributions. IEEE Transactions on Information Theory., 35, 688–692. http://dx.doi.org/10.1109/18.30996
Coulibaly, P.; Keum, J. (2016) Snow Network Design and Evaluation for La Grande River Basin; Hydro-Quebec: Hamilton, ON, Canada,. https://scholar.google.com/
Keum, J.; Kornelsen, K.C.; Leach, J.M.; Coulibaly, P. (2017) Entropy Applications to Water Monitoring Network Design: A Review. Entropy, 19, 613. https://doi.org/10.3390/e19110613
Zhao, R. (1992) The Xinanjiang model applied in China. Journal of Hydrology. 135, 371–381. https://scholar.google.com/
Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. (1998) Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of the American Water Resources Association., 34, 73–89. http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x
United Nations (2004) Guidelines for Reducing Flood Losses; Pilon, P., Ed.; United Nations, https://scholar.google.com/
Chapman, T. (1986) Entropy as a measure of hydrologic data uncertainty and model performance. Journal of Hy-drology., 85, 111–126. http://dx.doi.org/10.1016/0022-1694(86)90079-X
Yadav, M.; Wagener, T.; Gupta, H. (2007) Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources. 30, 1756–1774. http://dx.doi.org/10.1016/j.advwatres.2007.01.005
Sawicz, K.; Wagener, T.; Sivapalan, M.; Troch, P.; Carrillo, G. (2011) Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences. 15, 2895–2911. http://dx.doi.org/10.5194/hess-15-2895-2011
Richter, B.; Baumgartner, J.; Powell, J.; Braun, D. (1996) A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology. 10, 1163–1174. http://dx.doi.org/10.1046/j.1523-1739.1996.10041163.x
Monk, W.; Peters, D.; Allen Curry, R.; Baird, D. (2011) Quantifying trends in indicator hydroecological variables for regime-based groups of Canadian rivers. Hydrological Processes 25, 3086–3100. http://dx.doi.org/10.1002/hyp.8137
Kerr, Y.; Waldteufel, P.; Wigneron, J.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. (2010) The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proceedings of the IEEE., 98, 666–687. http://dx.doi.org/10.1109/JPROC.2010.2043032
Harbaugh, A. (2005) MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S. Geological Survey: Reston, VA, USA, https://pubs.er.usgs.gov/publication/tm6A16
Pollock, D. (2016) User Guide for MODPATH Version 7—A Particle-Tracking Model for MODFLOW; U.S. Geolog-ical Survey: Reston, VA, USA, https://pubs.er.usgs.gov/publication/ofr20161086
Bedekar, V.; Morway, E.; Langevin, C.; Tonkin, M.J. (2016) MT3D-USGS Version 1: A U.S. Geological Survey Re-lease of MT3DMS Updated with New and Expanded Transport Capabilities for Use with MODFLOW; U.S. Geolog-ical Survey: Reston, USA,
Šimu˚nek, J.; van Genuchten, M.; Šejna, M. (2012) The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porus Media; PC Progress: Prague, Czech Republic. https://scholar.google.com/
Owlia, R.; Abrishamchi, A.; Tajrishy, M. (2011) Spatial-temporal assessment and redesign of groundwater quality monitoring network: A case study. Environmental Monitoring and Assessment. 172, 263–273. http://dx.doi.org/10.1007/s10661-010-1332-8
Banik, B.; Alfonso, L.; di Cristo, C.; Leopardi, A.; Mynett, A. (2017) Evaluation of Different Formulations to Opti-mally Locate Sensors in Sewer Systems. Journal of Water Resources Planning and Management, 143. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000778
Ruddell, B.; Kumar, P. (2009) Ecohydrologic process networks: 1. Identification. Water Resources Research. 45. http://dx.doi.org/10.1029/2008WR007279
Ruddell B.; Kumar P. (2009) Ecohydrologic process networks: 2. Analysis and characterization. Water Resources Research. 45, 1–14. http://dx.doi.org/10.1029/2008WR007280
Kang M.; Ruddell B.; Cho, C.; Chun, J.; Kim, J. (2017) Agricultural and Forest Meteorology Identifying CO2 ad-vection on a hill slope using information flow. Agricultural and Forest Meteorology, 232, 265–278. http://dx.doi.org/10.1016/j.agrformet.2016.08.003
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.