Дослідження тривимірного простору міського середовища через автоматизоване виокремлення об’єктів із хмар лідарних точок

Ключові слова: лідар, лідарні дані, міське середовище, АВУО, моделі будівель, веб-ГІС-застосування, геопортал

Анотація

Стаття розглядає багатофункціональну методологію і практичну методику геообробки даних дистанційного лазерного (лідарного) зондування міського середовища у цілях його подальшого модельного відтворення та дослідження. Окремо підкреслюються як сучасні запити на залучення новітніх технологій до цих досліджень, так і виклики, що подібне залучення супроводжують. Докладний літературний огляд надає принципове розуміння головних положень автоматизованого виокремлення урбанізірованих об’єктів (АВУО) як головної складової геообробки хмар лідарних точок. Описуються окремі кроки АВУО як-то «визначення», «класифікація», «сегментація» та «реконструкція».
Представлене авторське програмне забезпечення (ПЗ) у вигляді веб-ГІС-застосування, призначеного для інтеграції різноманітних лідарних даних із наступною візуалізацією проміжних та кінцевих результатів їх обробки. Коротко розглянуті архітектурна схема цього веб-застосування як розподіленої інформаційної системи та його головні функціональності: Виокремлення будівель; Виокремлення будівель у сільській місцевості; Визначення змін у архітектурній морфології міста; Генерація топографічної поверхні. Детально розглядаються дві авторські модифікації альтернативних підходів у рамках АВУО – високополігональне та низькополігональне моделювання зі створенням «великовагових» та «низьковагових» моделей, відповідно.
Зокрема, пропонується низька оригінальних рішень за допомогою побудови діаграми Вороного на етапі реконструкції моделей будівель. Представлено веб-портал – геопортал авторського ПЗ, який надає доступ як до проектів із відтвореним міським середовищем по різних країнах, так і до відповідних інструментів обробки первинних лідарних даних користувача. У якості практичних прикладів називається декілька можливих сценаріїв користувача (use-cases – англ.) щодо реалізації функціональності геопорталу.

Завантаження

##plugins.generic.usageStats.noStats##

Біографії авторів

Sergiy Vasylovych Kostrikov, Харківський національний університет імені В.Н. Каразіна

доктор географічних наук, професор

Dmytro Yevgenovych Bubnov, EOS Data Analitics Ukraine, LLC

науковий співробітник та старший програміст

Rostyslav Anatoliyovych Pudlo, EOS Data Analitics Ukraine, LLC

Керівник групи досліджень та розробок

Посилання

Esch T., Thiel, M., Schenk, A. [and other] (2010). Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 905–916.

Esch, T., Heldens, W., Hirner, A. (2018). The Global Urban Footprint. Urban Remote Sensing. CRC Press, 34-43.

Kostrikov, S., Niemets, L., Sehida, K. [and other]. (2018) Geoinformation approach to the urban geographic system research (case studies of Kharkiv region). Visnyk of V.N. Karazin Kharkiv National University. Series “Geology. Geography. Ecology”, 49, 107-121. DOI: https://doi.org/10.26565/2410-7360-2018-49-09

Kostrikov S. (2019) Urban remote sensing with LIDAR for the Smart City concept implementation. Visnyk of V.N. Karazin Kharkiv National University. Series in Geology, Geography, and Ecology, 50, 101-124. DOI: https://doi.org/10.26565/2410-7360-2019-50-08

Biljecki, F. Stoter, J., Ledoux, H. [and other]. (2015). Applications of 3D City Models: State of the Art Review. ISPRS International Journal of Geo-Information, 4, 2842-2889.

Day, A. (1994). From map to model. Design Studies, 15, 366-384.

Batty, M. (2000). The new geography of the third dimension. Environment and Planning B: Planning and Design, 27, 483-487.

Kostrikov, S. (2004). Attributive data for GIS and definition of the fluvial topography morphological-morphometric characteristics. GEOINFORMATIKA. Journal of EGIS Ukrainian division, 4, 70-77.

Huisman, O., de By, R.A. (editors.). (2009). ITC Educational Textbook Series. Principles of Geographic Information Systems. Enschede, The Netherlands, 540.

Brewer, C.A. (2015). Designing Better Maps: A Guide for GIS Users. ESRI Press, 400.

Weng, Q. (2015). Remote sensing for urbanization in tropical and subtropical regions – Why and what matters? Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas. Boca Raton. Zhang, H., Lin, H. Zhang, Y., Q. Weng (Editors). FL: CRC Press/Taylor & Francis, 17-22.

Ban, Y., Gong, P., Giri, C. (2015). Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 1–6.

Esch, T. (2017). Breaking new ground in mapping human settlements from space. The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 30–42.

Potere, D., Schneider, A., Angel, S. (2009). Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? International Journal of Remote Sensing, 30, 6531–6558.

Schneider, A. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions. Remote Sensing of Environment, 114 (8), 1733–1746.

Zhou, Q., Zhang, W. (2004). A preliminary review on three-dimensional city model. Geo-Spatial Information Science, 7, 79–88.

Ellul, C., Haklay, M., Bevan, T. [and other]. (2005). Deriving a Generic Topological Data Structure for 3D Data. Proceedings of GISRUK. 13th Annual Conference, 137-142.

Ellul, C., Haklay, M. (2006). Requirements for Topology in 3D GIS. Transactions in GIS. Wiley Online Library, 10 (2), 157-175.

Brenner, C. (2000). Towards fully automatic generation of city models. ISPRS Archives. Amsterdam, XXXIII, 1-8.

Brenner, C. (2005). Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 6 (3), 187–198.

L. Zhang, L., Wang, Y., Shi Zhang, H. (2012). Modeling and analyzing 3D complex building interiors for effective evacuation simulations. Fire Safety Journal, 53, 1-12.

Katsianis, M.; Tsipidis, S.; Kotsakis, K. [and other]. (2008). A 3D digital workflow for archaeological intra-site research using GIS. Journal of Archaeological Science, 35, 655–667.

Groger, G., Plumer, L. (2011). How to achieve consistency for 3D city models. Geoinformatica, 15, 137-165.

Kostrikov, S. Pudlo, R. Kostrikova, A. (2018). Three Key EOS LiDAR Tool Functionalities for Urban Studies. Full Paper Proceeding of ACRO'2018, Kuala Lumpur, Malaysia. Technical Session: LiDAR Data Processing, 3, 1676-1685.

Kostrikov, S., Pudlo, R., Kostrikova, A. [and other]. (2019). Studying of urban features by the multifunctional approach to LiDAR data processing. IEEE Xplore Digital Library. Electronic ISSN: 2642-9535. Available at: https://ieeexplore.ieee.org/document/8809063

Weidner, U., Förstner, W. (1995). Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, 50, 38–49.

Baltsavias, E.P., Mason, S., Stallmann, D. (1995). Use of DTMs. DSMs and orthoimages to support building extraction. Workshop on AEMOASI, Basel, 199-210.

Pesaresi, M., Benediktsson, J. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transaction on Geosciences and Remote Sensing, 39, 309–320.

Awrangjeb, M., Fraser, C. (2014). Automatic segmentation of raw LIDAR data for extraction of building roofs. Remote Sensing, 6, 3716–3751.

Liu, C. Shi, B., Yang, X. [and other]. (2013). Automatic buildings extraction from LiDAR data in urban area by neural oscillator network of visual cortex. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 2008–2019.

Dong P., Chen, Q. (Editors). (2018). LiDAR Remote Sensing and Applications. Boca Raton: CRC Press, 246.

Shan, J., Sampath, A. (2009). Urban dem generation from raw LiDAR data: a labeling algorithm and its performance. Photogrammetric Engineering and Remote Sensing, 75, 427-442.

Sampath, A., Shan, J. (2010). Segmentation and reconstruction of polyhedral building roofs from aerial LIDAR point clouds. IEEE Transactions of Geoscience & Remote Sensing, 3, 1554–1567.

Sun, S., Salvaggio, C. (2012). Complex Building Roof Detection and Strict Description From LIDAR Data and Orthorectified Aerial Imagery. IEEE International Geoscience and Remote Sensing Symposium, 5466 - 5469.

Belkhouche, M.Y., Buckles, B. (2012). Iterative TIN-based automatic filtering of sparse LiDAR data. Remote Sensing Letters, 2(3), 231-240.

Chen, D. Zhang, L., Liu, R. (2012). Urban building roof segmentation from airborne LiDAR point clouds. International Journal of Remote Sensing, 33, 6497–6515.

Wang, R. (2013). 3D building modeling using images and LiDAR: a review. International Journal of Image and Data Fusion, 4(4), 273–292.

Perera, G.S.N., Maas, H.-G. (2014). Cycle graph analysis for 3D roof structure modelling: Concepts and performance. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 213–226.

Shan, J., Toth, Ch. (Editors). (2018). Topographic Laser Ranging and Scanning Pronciple and Processing. 2nd Edition / J. Shan, Ch. Toth (Editors). London – New York. CRC Press, 826.

Gruen, A. (1998). TOBAGO—A semi-automated approach for the generation of 3-D building models. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 108–118.

Haala, N., Brenner, C. (1999). Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 130–137.

Maas, H.-G. Vosselman, G. (1999). Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 153–163.

Stilla, U., Soerge, U., Thoennessen, U. (2003). Potential and limits of InSAR data for building reconstruction in built-up areas. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 113–123.

Suveg, I., and Vosselman, G. (2004). Reconstruction of Vol.3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 202–224.

Alexander, C. Smith-Voysey, S. Jarvis, C. [and other]. (2009). Integrating building footprints and LiDAR elevation data to classify roof structures and visualise buildings. Computers, Environment and Urban Systems, 33, 285-292.

Pu, S., Vosselman, G. (2009). Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 575–584.

Orthuber, E., Avbelj, J. (2015). 3D building reconstruction from Lidar point clouds by adaptive dual contouring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W4, PIA15+HRIGI15. Joint ISPRS conference 2015, 25–27 March, Munich, Germany.

Hu, Y. (2007). Automated Extraction of DTM, roads, and buildings using Airborne lidar. UCGE Reports. Number 20187. University of Calgary, 227.

Aijazi, A.K., Checchin, P., Trassoudaine, L. (2014). Automatic detection and feature estimation of windows in 3D urban point clouds exploiting façade symmetry and temporal correspondences // International Journal of Remote Sensing, 35, 7726–7748.

Arachchige, N.H., Perera, S.N., Maas, H.G. (2012). Automatic processing of mobile laser scanner point clouds for building facade detection. ISPRS International Archive of Photogrammetry and Remote Sensing in Spatial Information Science, XXXIX-B5, 187–192.

Yang, B., Dong, Z., Zhao, G. [and other]. (2015). Hierarchical extraction of urban objects from mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 99, 45–57.

Brinkman, R., O’Neill, C. (2000). LiDAR and photogrammetric mapping. The Military Engineer, 5, 56–57.

Hodgson, M., Bresnahan, P. (2004). Accuracy of airborne lidar-derived elevation: Empirical assessment and error budget. Photogrammetric Engineering and Remote Sensing, 70, 331–339.

Xiao, Y., Wang, C. Li, J. [and other]. (2014). Building segmentation and modeling from airborne. International Journal of Digital Earth, 8, 694–709.

Zhang, K., Whitman, D. (2005). Comparison of three algorithms for filtering airborne LiDAR data. Photogrammetric Engineering and Remote Sensing, 71, 313–324.

Umasuthan, U., Wallace, A.M. (1996). Outlier removal and discontinuity preserving smoothing of range data. IEEE Proceedings on Visual Imaging & Signal Processing, 143, 3, 191-200.

Haala, N., Kada, M. (2010). An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 570–580.

Vosselman, G., Dijkman, S. (2001). 3D building model reconstruction from point clouds and ground plans. International Archive of Photogrammetry and Remote Sensing, XXXIV-3/W4, 37-43.

Oda, K., Takano, T., Doihara, T. (2004). Automatic building extraction and 3-D city modeling from lidar data based on Hough transformation. International Archive of Photogrammetry and Remote Sensing, XXXV, part B3.

Evans, J.S., Hudak, A.T. (2008). A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Transactions of Geoscience and Remote Sensing, 46, 987–997.

Song, J.H., Han, S.H., Yu, K. [and other]. (2002). Assessing the possibility of land-cover classification using lidar intensity data. IAPRS, 34, 41-47.

Kwak, E., Habib, A. (2014). Automatic representation and reconstruction of DBM from LiDAR data using recursive minimum bounding rectangle. ISPRS Journal of Photogrammetry and Remote Sensing, 93(7), 171–191.

Lee, H.S,, Younan, N.H.(2003). DTM extraction of LiDAR returns via adaptive processing. IEEE Transactions of Geoscience Remote Sensing, 41, 2063-2069.

Sithole, G., Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. Photogrammetric Engineering and Remote Sensing, 59, 85-101

Awrangjeb, M., Ravanbakhsh, M., Fraser, C.S. (2011). Automatic detection of residential building using LiDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 668–679.

Alharthy, A., Bethel, J. (2002). Heuristic filtering and 3D feature extraction from LiDAR data. International Archives on Photogrammetry and Remote Sensing, 34 (3A), 29–34.

Rottensteiner, F. (2005). Using the Dempster-Shafer method for the fusion of LiDAR data and multispectral images for building detection. Information Fusion, 6 (4), 283–300.

Wang, J., Shan, J. (2009). Segmentation of LiDAR point clouds for building extraction. Proceedings of American Society for Photogrammetry and Remote Sensing Annual Conference, Baltimore, MD, 9–13.

Sohn, G., Huang, X., Tao, V. (2008). Using binary space partitioning tree for reconstructing polyhedral building models from airborne LIDAR data. Photogrammetric Engineering and Remote Sensing, 74, 1425–1438.

Charles, R.Q. (2017). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Available at: http://stanford.edu/~rqi/pointnet/

Schiewe, J. (2003). Integration of multi-sensor data for landscape modeling using a region-based approach. ISPRS JPRS, 57, 371-379.

Dorninger, P., Pfeifer, N. (2008). A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors, 8(11), 7323–7343.

Zhang, C., Baltsavias, E., Gruen, A. (2001). Knowledge-based image analysis for 3D road reconstruction. Asian Journal of Geoinformatics, 1(4), 3-14.

Wang, Z., Schenk, T. (2000). Building extraction and reconstruction from lidar data. IAPRS. 17-22 July, Amsterdam, 33, part B3, 958-964.

Rottensteiner, D.F., Briese, C. A new method for building extraction in urban areas from high-resolution lidar data. IAPRS, 9-13 September, Graz, Austria, 34, Part 3A/B, 295-301.

Vestri, C., Devernay, F. (2001). Using robust methods for automatic extraction of buildings. CVPR, 1, 133-138.

Xu, L. Kong, D., Li, X. (2014). On-the-fly extraction of polyhedral buildings from airborne LiDAR data. IEEE Geoscience and Remote Sensing Letters, 11(11), 1946–1950.

Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. ACM SIGKDD Explorations Newsletter, 4(1), 65–75.

Sampath, A., Shan, J. (2007). Building boundary tracing and regularization from airborne LiDAR point clouds. Photogrammetric Engineering & Remote Sensing, 73(7), 805–812.

Lari, Z., Habib, A. (2014). An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 93(7), 192–212.

Kostrikov, S., Bubnov, D., Kostrikova, A., Pudlo, R. (2018), ELiT web-application – the software for urban environment modeling and analysis. GIS-Forum-2018, 56-59.

Kostrikov, S., Vasiliev, V., Pudlo, R. [and other]. (2019). Urban environment research through its simulation by lidar data processing. REGION-2019: The strategy for optimal development. Kharkiv, 34-37.

Kostrikov S., Kulakov D., Sehida K. (2014). Programne zabezpechennya GIS dlya LiDAR-technologii dustantsijjnogo zonduvannya v tsilyah analizu urbogeosystem [GIS-software for the urban geosystem analysis with LiDAR-technique]. Problemu bezperervnoi geographichnoi osvitu i kartographii. Proceedings of GIS Forum’2014, 19, 45-52.

Teo, T.-A., Shi, T.Y. (2012). Lidar-based change detection and change type determination in urban areas. International Journal of Remote Sensing, 34, 968–981.

Zhang, K., Yan, J., Chen, S.C. (2006). Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523–2533.

Stilla, U., Jurkiewicz, K. (1999). Reconstruction of building models from maps and laser altimeter data / P. Agouris, A. Stefanidis (Editors). Integrated Spatial Databases: Digital Images and GIS. Springer, Berlin, 34–46.

Shewchuk, J. (2014). Delaunay refinement algorithms for triangular mesh generation. Computing Geometry, 47, 741-778.

Shan, J., Sampath, A.. Building extraction from LiDAR point clouds based on clustering techniques. Topographic Laser Ranging and Scanning: Principles and Processing / J. Shan, C. Toth (Editors). Boca Raton, FL: CRC Press, Ch. 15, 423–446.

Sampath, A., Sha, J. (2008). Building roof segmentation and reconstruction from lidar point clouds using clustering techniques. International Archive of Photogrammetry and Remote Sensing, XXXVII, Part B3a, 279-284.

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P. (2008). Extended RANSAC algorithm for automatic detection of building roof planes from LIDAR data. Photogrammetric Journal of Finland, 21(1), 97-109.

Sun, S., Salvaggio, C. (2013). Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1440-1449.

Fan, H., Yao, W., Fu, Q. (2014). Segmentation of Sloped Roofs from Airborne LiDAR Point Clouds Using Ridge-Based Hierarchical Decomposition. Remote Sensing, 6, 3284-3301.

Tse, R. Gold, Ch., Kidner, D. (2007). Using the Delaunay Triangulation/ Voronoi Diagram to extract Building Information from Raw LIDAR Data. 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). IEEE Xplore Digital Library. Print ISBN: 0-7695-2869-4.

Tse, R., Dakowicz, M., Gold, C.M. (2005). Building reconstruction using LIDAR data. Proceedings 4th ISPRS workshop on dynamic and multi-dimensional GIS. Pontypridd, Wales, UK, 156–161.

Nan, L., Jiang, C., Ghanem, B. [and other]. (2015). Template assembly for detailed urban reconstruction. Computer Graphics Forum, 34, 217–228.

Nan, L., Wonka, P. (2017). Polyfit: Polygonal surface reconstruction from point clouds / L. Nan, P. Wonka // Proceedings International Conference on Computer Vision. Available at: http://openaccess.thecvf.com/

content_ICCV_2017/papers/Nan_PolyFit_Polygonal_Surface_ICCV_2017_paper.pdf

Tait, M.G. (2005). Implementing geoportals: applications of distributed GIS. Computers, Environment and Urban Systems, 29(1), 33-47.

Beaumont, P., Longley, P.A., Maguire, D.J. (2005). Geographic information portals – a UK perspective. Computers, Environment and Urban Systems, 29(1), 49-69.

Опубліковано
2020-07-07
Цитовано
Як цитувати
Kostrikov, S. V., Bubnov, D. Y., & Pudlo, R. A. (2020). Дослідження тривимірного простору міського середовища через автоматизоване виокремлення об’єктів із хмар лідарних точок. Вісник Харківського національного університету імені В. Н. Каразіна, cерія «Геологія. Географія. Екологія», (52), 156-181. https://doi.org/10.26565/2410-7360-2020-52-12