Determination of the Dependence of the Oscillation of Transverse Electrical Conductivity and Magnetoresistance on Temperature in Heterostructures Based on Quantum Wells

Keywords: semiconductor, conductivity, quantum well, magnetoresistance, magnetic field

Abstract

In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential)  at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigated the results of experiments of a narrow-band quantum well (InxGa1-xSb).

Downloads

Download data is not yet available.

References

N.A. Yuzeeva, G.B. Galiev, E.A. Klimova, L.N. Oveshnikov, R.A. Lunin, and V.A. Kulbachinskii, Phys. Procedia, 72, 425 (2015). https://doi.org/10.1016/j.phpro.2015.09.087

V. Tarquini, T. Knighton, Zh. Wu, J. Huang, L. Pfeiffer, and K. West, Appl. Phys. Lett. 104, 092102 (2014). https://doi.org/10.1063/1.4867086

I.B. Berkutov, V.V. Andrievskii, Yu.F. Komnik, Yu.A. Kolesnichenko, R.J.H. Morris, and D.R. Leadley, Low Temp. Phys. 38, 1145 (2012). https://doi.org/10.1063/1.4770520

Y. Abdullah, and S. Kashif, J. Phys. Condens. Matter, 27, 435007, (2015). https://doi.org/10.1088/0953-8984/27/43/435007

A. Bogan, A.T. Hatke, S.A. Studenikin, A. Sachrajda, M.A. Zudov, L.N. Pfeiffer, and K.W. West, J. Phys. Conf. Ser. 456, 012004 (2013). https://doi.org/10.1088/1742-6596/456/1/012004

B.T. Abdulazizov, Eurasian J. Phys. Funct. Mater. 6, 32 (2022). https://doi.org/10.32523/ejpfm.2022060103

F. Sarcan, A. Erol, M. Gunes, M.Ç. Arikan, J. Puustinen, and M. Guina, Nanoscale Res. Lett. 9, 141 (2014). https://doi.org/10.1186/1556-276X-9-141

G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Mod Phys Lett B. 37, 2350015 (2023). https://doi.org/10.1142/S021798492350015X

B.T. Abdulazizov, G. Gulyamov, P.J. Baymatov, Sh.T. Inoyatov, M.S. Tokhirjonov, and Kh.N. Juraev, SPIN. 12, 2250002 (2022). https://doi.org/10.1142/S2010324722500023

F. Nutku, O. Donmez, F. Kuruoglu, S. Mutlu, A. Erol, S. Yildirim, and M.C. Arikan, J. Phys. D: Appl. Phys. 48, 305108 (2015). https://doi.org/10.1088/0022-3727/48/30/305108

P.J. Baymatov, A.G. Gulyamov, B.T. Abdulazizov, Kh.Yu. Mavlyanov, and M.S. Tokhirjonov, Int. J. Mod. Phys. B, 35, 2150070 (2021). https://doi.org/10.1142/S0217979221500703

G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, and J.I. Mirzaev, J. Nano- Electron. Phys. 12, 03012 (2020). https://doi.org/10.1142/S0217979220500526

U.I. Erkaboev, G. Gulyamov, J.I. Mirzaev, and R.G. Rakhimov, Int. J. Mod. Phys. B, 34, 2050052 (2020). https://doi.org/10.1142/S0217979220500526

G. Gulyamov, B.T. Abdulazizov, and P.J. Baymatov, J. Nanomater. 2021, 5542559 (2021). https://doi.org/10.1155/2021/5542559

G. Gulyamov, U.I. Erkaboev, N.A. Sayidov, and R.G. Rakhimov, J. Appl. Sci. Eng. 23, 453 (2020). https://doi.org/10.6180/jase.202009_23(3).0009

Ch.T. Tai, P.Y. Chiu, Ch.Y. Liu, H.Sh. Kao, C.Th. Harris, T.M. Lu, Ch.T. Hsieh, Sh.W. Chang, and J.Y. Li, Adv. Mater. 33, 2007862 (2021). https://doi.org/10.1002/adma.202007862

F.S. Pena, S. Wiedmann, E. Abramof, D.A.W. Soares, P.H.O. Rappl, S. Castro, and M.L. Peres, Phys. Rev. B, 103, 205305 (2021.) https://doi.org/10.1103/PhysRevB.103.205305

U.I. Erkaboev, G. Gulyamov, J.I. Mirzaev, R.G. Rakhimov, and N.A. Sayidov, Nano, 16, 2150102 (2021). https://doi.org/10.1142/S0217984921502936

U.I. Erkaboev, R.G. Rakhimov, and N.A. Sayidov, Mod. Phys. Lett. B, 35, 2150293 (2021). https://doi.org/10.1142/S0217984921502936

P.J. Baymatov, A.G. Gulyamov, and B.T. Abdulazizov, Adv. Condens. Matter Phys. 2019, 8317278 (2019). https://doi.org/10.1155/2019/8317278

N.Q. Bau, and B.D. Hoi, Int. J. Mod. Phys. B, 28, 1450001 (2014). https://doi.org/10.1142/S0217979214500015

U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov, and J.I. Mirzaev, Indian J. Phys. 97, 1601 (2023). https://doi.org/10.1007/s12648-022-02435-8

U.I. Erkaboev, U.M. Negmatov, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Int. J. Appl. Sci. Eng. 19, 2021123(2022). https://doi.org/10.6703/IJASE.202206_19(2).004

I.B. Berkutov, V.V. Andrievskii, Yu.F. Komnik, and O.A. Mironov, Low Temp. Phys. 36(12), 1076 (2010). https://doi.org/10.1063/1.3536348

A.Ya. Shik, L.G. Bakueva, S.F. Musikhin, and S.A. Rykov, Physics of low-dimensional system, (Press “Science”, Saint Petersburg, 2001).

U.I. Erkaboev, G. Gulyamov, and R.G. Rakhimov, Indian J. Phys. 96, 2359 (2022). https://doi.org/10.1007/s12648-021-02180-4

W. Zawadzki, A. Raymond, and M. Kubisa, Phys. Status Solidi B, 251(2), 247 (2013). https://doi.org/10.1002/pssb.201349251

A.I. Anselm, Phys.-Uspekhi. 85(1), 183 (1965). https://doi.org/0.3367/UFNr.0085.196501f.0183

G. Gulyamov, U.I. Erkaboev, and P.J. Baymatov, Adv. Condens. Matter Phys. 2016, 5434717 (2016). https://doi.org/10.1155/2016/5434717

P.J. Baymatov, and B.T. Abdulazizov, Ukr. J. Phys. 62(1), 46 (2017). https://doi.org/10.15407/ujpe62.01.0046

V.N. Brudnyi, N.G. Kolin, and A.I. Potapov, Semiconductors, 37(4), 390 (2003). https://doi.org/10.1134/1.1568456

R. Magno, E.R. Glaser, B.P. Tinkham, J.G. Champlain, J.B. Boos, M.G. Ancona, and P.M. Campbell, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. 24(3), 1622 (2006). https://doi.org/10.1116/1.2201448

Published
2023-09-04
Cited
How to Cite
Erkaboev, U. I., & Rakhimov, R. G. (2023). Determination of the Dependence of the Oscillation of Transverse Electrical Conductivity and Magnetoresistance on Temperature in Heterostructures Based on Quantum Wells. East European Journal of Physics, (3), 133-145. https://doi.org/10.26565/2312-4334-2023-3-10