Modeling the Temperature Dependence of Shubnikov-De Haas Oscillations in Light-Induced Nanostructured Semiconductors

Keywords: semiconductor, heterostructure, oscillation, magnetoresistance, quantum well

Abstract

In this work, the influence of light on the temperature dependence of transverse magnetoresistance oscillations is studied. A generalized mathematical expression that calculates the temperature and light dependence of the quasi-Fermi levels of small-scale p-type semiconductor structures in a quantizing magnetic field is derived. New analytical expressions have been found to represent the temperature dependence of transverse differential magnetoresistance oscillations in dark and light situations, taking into account the effect of light on the oscillations of the Fermi energy of small-scale semiconductor structures. A mathematical model has been developed that determines the light dependence of the second-order derivative of the transverse magnetoresistance oscillations of p‑type semiconductors with quantum wells by magnetic field induction. A new theory is proposed, which explains the reasons for the significant shift of the differential magnetoresistance oscillations along the vertical axis measured in the experiment for dark and light conditions.

Downloads

Download data is not yet available.

References

N.T. Bagraev, E.S. Brilinskaya, E.Yu. Danilovskii, L.E. Klyachkin, A.M. Malyarenko, and V.V. Romanov, Semiconductors, 46(1), 87 (2012). https://doi.org/10.1134/S1063782612010022

V.V. Romanov, V.A. Kozhevnikov, C.T. Tracey, and N.T. Bagraev, Semiconductors, 53(12), 1629 (2019). https://doi.org/10.1134/S1063782619160231

N.T. Bagraev, V.Yu. Grigoryev, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, and V.V. Romanov, Semiconductors, 50(8), 1025 (2016). https://doi.org/10.1134/S1063782616080273

G. Gulyamov, U.I. Erkaboev, and A.G. Gulyamov, J. Nano- Electron. Phys. 11(1), 01020 (2019). https://doi.org/10.21272/jnep.11(1).01020

U.I. Erkaboev, G. Gulyamov, J.I. Mirzaev, R.G. Rakhimov, and N.A. Sayidov, Nano, 16(9), 2150102 (2021). https://doi.org/10.1142/S1793292021501022

S.D. Liu, N. Tang, X.Q. Shen, J.X. Duan, F.C. Lu, X.L. Yang, F.J. Xu, X.Q. Wang, T. Ide, M. Shimizu, W.K. Ge, and B. Shen, J. Appl. Phys. 114(3), 033706 (2013). https://doi.org/10.1063/1.4813512

G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Mod. Phys. Lett. B. 37(10), 2350015 (2023). https://doi.org/10.1142/S021798492350015X

G. Gulyamov, M.G. Dadamirzaev and S.R. Boidedaev, Semiconductors, 34, 260 (2000). https://doi.org/10.1134/1.1187967

M. Ahmetoglu(Afrailov), G. Kaynak, S. Shamirzaev, G. Gulyamov, A. Gulyamov, M.G. Dadamirzaev, S.R. Boydedayev, and N. Aprailov, Int. J. Mod. Phys. B. 23(15), 3279 (2009). https://doi.org/10.1142/S0217979209053084

G. Gulyamov, M.G. Dadamirzaev, and S.R. Boidedaev, Semiconductors, 34, 555 (2000). https://doi.org/10.1134/1.1188027

V.A. Kulbachinskii, N.A. Yuzeeva, G.B. Galiev, E.A. Klimov, I.S. Vasil'evskii, R.A. Khabibullin, and D.S. Ponomarev, Semicond. Sci. Technol. 27(3), 035021 (2012). https://doi.org/10.1088/0268-1242/27/3/035021

K. Požela, A. Šilėnas, J. Požela, V. Jucienė, G.B. Galiev, J.S. Vasil’evskii, and E.A. Klimov, Appl. Phys. A. 109(1), 233 (2012). https://doi.org/10.1007/s00339-012-7039-7

G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, and J.I. Mirzaev, J. Nano- Electron. Phys. 12(3), 03012 (2020). https://doi.org/10.21272/jnep.12(3).03012

U.I. Erkaboev, U.M. Negmatov, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Int. J. Appl. Sci. Eng. 19(2), 2021123 (2022). https://doi.org/10.6703/IJASE.202206_19(2).004

N.Q. Bau, and B.D. Hoi, Int. J. Mod. Phys. B. 28(03), 1450001 (2014). https://doi.org/10.1142/S0217979214500015

U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, and M. Abduxalimov, AIP Conf. Proc. 2789(1), 040055 (2023). https://doi.org/10.1063/5.0145554

N.Q. Bau, N.V. Hieu, and N.V. Nhan, Superlattices Microstruct. 52(5), 921 (2012). https://doi.org/10.1016/j.spmi.2012.07.023

U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, and A. Mashrapov, AIP Conf. Proc. 2789(1), 040056 (2023). https://doi.org/10.1063/5.0145556

N.Q. Bau, and B.D. Hoi, J. Korean Phys. Soc. 60(1), 59 (2012). https://doi.org/10.3938/jkps.60.59

U. Erkaboev, R. Rakhimov, J. Mirzaev, U. Negmatov, and N. Sayidov, Int. J. Mod. Phys. B. (2023). https://doi.org/10.1142/S0217979224501856

E.E. Vdovin, M. Ashdown, A. Patanè, L. Eaves, R.P. Campion, Yu.N. Khanin, M. Henini, and O. Makarovsky, Phys. Rev. B. 89(20), 205305 (2014). https://doi.org/10.1103/PhysRevB.89.205305

U.I. Erkaboev, and R.G. Rakhimov, e-J. Surf. Sci. Nanotechnol. (2023). https://doi.org/10.1380/ejssnt.2023-070

M.L. Peres, H.S. Monteiro, V.A. Chitta, S. de Castro, U.A. Mengui, P.H.O. Rappl, N.F. Oliveira, Jr, E. Abramof, and D.K. Maude, J. Appl. Phys. 115(9) (2014) 093704. https://doi.org/10.1063/1.4867627

U.I. Erkaboev, N.A. Sayidov, R.G. Rakhimov and U.M. Negmatov, Euroasian J. Eng. Sci. Technol. 3(1) 47 (2021). https://doi.org/10.37681/2181-1652-019-X-2021-1-8

U.I. Erkaboev, G. Gulyamov, J.I. Mirzaev, and R.G. Rakhimov, Int. J. Mod. Phys. B. 34(7), 2050052 (2020). https://doi.org/10.1142/S0217979220500526

G. Gulyamov, U.I. Erkaboev, N.A. Sayidov and R.G. Rakhimov, J. Appl. Sci. Eng. 23(3), 453 (2020). https://doi.org/10.6180/jase.202009_23(3).0009

H. Phuphachong, B.A. Assaf, V.V. Volobuev, G. Bauer, G. Springholz, L.A. De Vaulchier, and Y. Guldner, Crystals, 7(1), (2017). https://doi.org/10.3390/cryst7010029

E.A. Morais, I.F. Costa, E. Abramof, D.A.W. Soares, P.H.O. Rappl, and M.L. Peres, Phys. E: Low-Dimens. Syst. Nanostructures. 127, 114575 (2021). https://doi.org/10.1016/j.physe.2020.114575

R. Rakhimov, and U. Erkaboev, Scientific and Technical Journal of Namangan Institute of Engineering and Technology, 2(11), 27 (2020). https://namdu.researchcommons.org/journal/vol2/iss11/5/

U.I. Erkaboev, R.G. Rakhimov, and N.A. Sayidov, Mod. Phys. Lett. B. 35(17), 2150293 (2021). https://doi.org/10.1142/S0217984921502936

Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L.C. Kimerling, J. Hu, K. Richardson, D.T.H. Tan, and A. Agarwal. Appl. Phys. Lett. 109(7), 071111 (2016). https://doi.org/10.1063/1.4961532

U.I. Erkaboev, R.G. Rakhimov, and N.Y. Azimova, Glob. Sci. Rev. 12, 33 (2023). https://scienticreview.com/index.php/gsr/article/view/156

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Int. J. Eng. Innov. Technol. 9(5), 1557 (2021). http://doi.org/10.35940/ijitee.E2613.039520

F.S. Pena, M.L. Peres, M.J.P. Pirralho, D.A.W. Soares, C.I. Fornari, P.H.O. Rappl, and E. Abramof, Appl. Phys. Lett. 111(19), 192105 (2017). https://doi.org/10.1063/1.4990402

G. Gulyamov, M.G. Dadamirzaev, and M.O. Kosimova, Rom. J. Phys. 68, 603 (2023). https://rjp.nipne.ro/2023_68_1-2/RomJPhys.68.603.pdf

U.I. Erkaboev, and R.G. Rakhimov, East Eur. J. Phys. 3, 133 (2023). https://doi.org/10.26565/2312-4334-2023-3-10

U.I. Erkaboev, and R.G. Rakhimov, e-Prime- Adv. Electr. Electron. Eng. Elect. Energ. 3, 100236 (2023). https://doi.org/10.1016/j.prime.2023.100236

U.I. Erkaboev, G. Gulyamov and R.G. Rakhimov, Ind. J. Phys. 96(8), 2359-2368 (2022). https://doi.org/10.1007/s12648-021-02180-4

U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov, and J.I. Mirzaev, Ind. J. Phys. 97(4), 1061 (2023). https://doi.org/10.1007/s12648-022-02435-8

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov, and N.A. Sayidov, Ind. J. Phys. 98(1), 189 (2024). https://doi.org/10.1007/s12648-023-02803-y

U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, J.I. Mirzaev, and R.G. Rakhimov, E3S Web Conf. 401, 01090 (2023). https://doi.org/10.1051/e3sconf/202340101090

U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, R.G. Rakhimov, and J.I. Mirzaev, E3S Web Conf. 401, 04042 (2023). https://doi.org/10.1051/e3sconf/202340104042

U.I. Erkaboev, R.G. Rakhimov, U.M. Negmatov, N.A. Sayidov, and J.I. Mirzaev, Rom. J. Phys. 68, 614 (2023). https://rjp.nipne.ro/2023_68_5-6/RomJPhys.68.614.pdf

M.Ya. Vinnichenko, I.S. Makhov, N.Yu. Kharin, S.V. Graf, V.Yu. Panevin, I.V. Sedova, S.V. Sorokin, and D.A. Firsov, Semiconductors, 55(9), 710-716 (2021). https://doi.org/10.1134/S1063782621080212

Citations

The Influence of a Strong Electromagnetic Field on Magnetoresistance Oscillations in Quantum-Scale Semiconductor Structures
NEGMATOV U.M., DADAMIRZAEV M.G. , SAYIDOV N.A. , TEMIROV Q.A. , ERKABOEV U.I. , MIRZAEV J.I. & RAKHIMOV R.G. (2025) Romanian Journal of Physics
Crossref

Determination of the residual life of the pipe metal under conditions of corrosion fatigue
Garifullina Gulnaz, Gizzatullina Alina, Uzakov G., Abdullozoda R., Bovtrikova E., Gibadullin A. & Toshmamatov B. (2024) E3S Web of Conferences
Crossref


Erkaboev U. I., Rakhimov R. G., Tursunov B. A., Obidjanov M. O. & Rajabov J. I. (2025)
Crossref

Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field
Erkaboev Ulugbek I., Ruzaliev Sherzodjon A., Rakhimov Rustamjon G. & Sayidov Nozimjon A. (2024) East European Journal of Physics
Crossref

Effect of chromium (Cr2+) additive on electrical and dielectric studies of cobalt doped cadmium–nickel perminvar ferrite
Alam Shamsun, Das H. N. & Sourav Salahuddin (2025) Indian Journal of Physics
Crossref


Erkaboev U. I., Rakhimov R. G., Mirzamahmudov A. B., Sayidov N. A. & Negmatov U. M. (2025)
Crossref

Modeling the Temperature Dependence of Magneto-Optical Absorption Coefficients in Nanostructured Semiconductors
ERKABOEV U.I., RAKHIMOV R.G. & SAYIDOV N.A. (2025) Romanian Journal of Physics
Crossref

Published
2024-03-05
Cited
How to Cite
Erkaboev, U. I., Rakhimov, R. G., Mirzaev, J. I., Sayidov, N. A., & Negmatov, U. M. (2024). Modeling the Temperature Dependence of Shubnikov-De Haas Oscillations in Light-Induced Nanostructured Semiconductors. East European Journal of Physics, (1), 485-492. https://doi.org/10.26565/2312-4334-2024-1-53