Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field

Keywords: semiconductor, nanoscale semiconductor structures, quantizing magnetic field, quantum well, oscillation, density of energy states.

Abstract

In this work, the dependence of the oscillation of the combined density of states on a strong magnetic field in heterostructures based on a rectangular quantum well is studied. The effect of a quantizing magnetic field on the temperature dependence of the combined density of states in nanoscale straight-band heterostructures is investigated. A new mathematical model has been developed for calculating the temperature dependence of the two-dimensional combined density of quantum well states in quantizing magnetic fields. The proposed model explains the experimental results in nanoscale straight-band semiconductors with a parabolic dispersion law.

Downloads

Download data is not yet available.

References

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, and U.M. Negmatov, East Eur. J. Phys. (1), 485fghj (2024). https://doi.org/10.26565/2312-4334-2024-1-53

U.I. Erkaboev, and R.G. Rakhimov, J. Comput. Electron. 23(2), (2024). https://doi.org/10.1007/s10825-024-02130-3

L.R. Mohan, and P.A. Wolff, Phys. Rev. 26, 6711 (1982). https://doi.org/10.1103/PhysRevB.26.6711

M.L. Badgutdinov, and A.É. Yunovich, Semiconductors, 42, 429 (2008). http://dx.doi.org/10.1134/S1063782608040106

V.E. Kudryashov, A.N. Turkin, A.E. Yunovich, A.N. Kovalev, and F.I. Manyakhin, Semiconductors, 33, 429 (1999). https://doi.org/10.1134/1.1187707

Sh. Bhar, and S.K. Roy, Comp. Phys. Commun. 184, 1387 (2013). https://doi.org/10.1016/j.cpc.2013.01.004

C.I. Cabrera, D.A. Contreras-Solorio, and L. Hernández, Phys. E, 76, 103 (2016). https://doi.org/10.1016/j.physe.2015.10.013

J. Hwang, and J.D. Phillips, Phys. Rev. B. 83, 195327-1 (2011). http://dx.doi.org/10.1103/PhysRevB.83.195327

J. Lee, H.N. Spector, W.Ch. Chou, and Y.Sh. Huang, Phys. Rev. B, 72, 125329 (2005). http://dx.doi.org/10.1103/PhysRevB.72.125329

D. Shen, J. Dong, J. Shen, Y. Zhang, B. Xie, G. Wu, X. Chen, et al., J. Phys. Chem. Solids, 69, 2975 (2008). https://doi.org/10.1016/j.jpcs.2008.06.072

T.S. Moss, G.J. Burrel, and B. Ellis, Semiconductor opto-electronics, (Butterworth & Co. Ltd, England, 1973). https://doi.org/10.1016/C2013-0-04197-7

N.F. Mott, and E.A. Davis, Electronic processes in non-crystalline materials, (Clarendon Press, Oxford, 1971). https://doi.org/10.1063/1.3071145

A. Kulkarni, D. Guney, and A. Vora, Nanomaterials, 2013, 504341 (2013). http://dx.doi.org/10.1155/2013/504341

U.I. Erkaboev, G. Gulyamov, and R.G. Rakhimov, Indian J. Phys. 96, 2359 (2022). https://doi.org/10.1007/s12648-021-02180-4

U.I. Erkaboev, U.M. Negmatov, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Int. J. Appl. Sci. Eng. 19, 2021123 (2022). https://doi.org/10.6703/IJASE.202206_19(2).004

U.I. Erkaboev, and R.G. Rakhimov, East Eur. J. Phys. 3, 133 (2023). https://doi.org/10.26565/2312-4334-2023-3-10

U.I. Erkaboev and R.G. Rakhimov, e-Prime - Advances in Electrical Engineering, Electronics and Energy, 5, 100236 (2023). https://doi.org/10.1016/j.prime.2023.100236

U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, J.I. Mirzaev, and R.G. Rakhimov, E3S Web Conf. 401, 01090 (2023). https://doi.org/10.1051/e3sconf/202340101090

U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, J.I. Mirzaev, and R.G. Rakhimov, E3S Web Conf. 401, 04042 (2023). https://doi.org/10.1051/e3sconf/202340104042

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov, and M. Abduxalimov. AIP Conf. Proc. 2789, 040055 (2023). https://doi.org/10.1063/5.0145554

L.V. Grigoriev, Silicon photonics (ITMO University, St. Petersburg, 2016). (in Russian)

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov, and A. Mashrapov, AIP Conf. Proc. 2789, 040056 (2023). https://doi.org/10.1063/5.0145556

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov and N.A. Sayidov, Ind. J. Phys. 98, 189 (2024). https://doi.org/10.1007/s12648-023-02803-y

U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov, and N.A. Sayidov, Int. J. Mod. Phys. B. 38, 2450185 (2024). https://doi.org/10.1142/S0217979224501856

G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev and N.A. Sayidov, Mod. Phys. Lett. B. 37, 2350015 (2023), https://doi.org/10.1142/S021798492350015X

D. Schoenberg, Magnetic oscillations in metals, (Wiley, New York, 1986). http://dx.doi.org/10.1017/CBO9780511897870

L.S. Stilbans, Physics of semiconductors, (Soviet Radio, Moscow, 1967). (in Russian)

A.V. Mikhailov, A.V. Trifonov, O.S. Sultanov, I.Yu. Yugova, and I.V. Ignatiev, Semiconductors, 56, 672 (2022).

U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov, and J.I. Mirzaev, Indian J. Phys. 2022, (2022). https://doi.org/10.1007/s12648-022-02435-8

Yu. Wang, N. Chen, Ch. Lu, and J. Chen, Phys. B, 406, 4300 (2011). https://doi.org/10.1016/j.physb.2011.08.071

Published
2024-09-02
Cited
How to Cite
Erkaboev, U. I., Ruzaliev, S. A., Rakhimov, R. G., & Sayidov, N. A. (2024). Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field. East European Journal of Physics, (3), 270-277. https://doi.org/10.26565/2312-4334-2024-3-26