Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field
Abstract
In this work, the dependence of the oscillation of the combined density of states on a strong magnetic field in heterostructures based on a rectangular quantum well is studied. The effect of a quantizing magnetic field on the temperature dependence of the combined density of states in nanoscale straight-band heterostructures is investigated. A new mathematical model has been developed for calculating the temperature dependence of the two-dimensional combined density of quantum well states in quantizing magnetic fields. The proposed model explains the experimental results in nanoscale straight-band semiconductors with a parabolic dispersion law.
Downloads
References
U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, and U.M. Negmatov, East Eur. J. Phys. (1), 485fghj (2024). https://doi.org/10.26565/2312-4334-2024-1-53
U.I. Erkaboev, and R.G. Rakhimov, J. Comput. Electron. 23(2), (2024). https://doi.org/10.1007/s10825-024-02130-3
L.R. Mohan, and P.A. Wolff, Phys. Rev. 26, 6711 (1982). https://doi.org/10.1103/PhysRevB.26.6711
M.L. Badgutdinov, and A.É. Yunovich, Semiconductors, 42, 429 (2008). http://dx.doi.org/10.1134/S1063782608040106
V.E. Kudryashov, A.N. Turkin, A.E. Yunovich, A.N. Kovalev, and F.I. Manyakhin, Semiconductors, 33, 429 (1999). https://doi.org/10.1134/1.1187707
Sh. Bhar, and S.K. Roy, Comp. Phys. Commun. 184, 1387 (2013). https://doi.org/10.1016/j.cpc.2013.01.004
C.I. Cabrera, D.A. Contreras-Solorio, and L. Hernández, Phys. E, 76, 103 (2016). https://doi.org/10.1016/j.physe.2015.10.013
J. Hwang, and J.D. Phillips, Phys. Rev. B. 83, 195327-1 (2011). http://dx.doi.org/10.1103/PhysRevB.83.195327
J. Lee, H.N. Spector, W.Ch. Chou, and Y.Sh. Huang, Phys. Rev. B, 72, 125329 (2005). http://dx.doi.org/10.1103/PhysRevB.72.125329
D. Shen, J. Dong, J. Shen, Y. Zhang, B. Xie, G. Wu, X. Chen, et al., J. Phys. Chem. Solids, 69, 2975 (2008). https://doi.org/10.1016/j.jpcs.2008.06.072
T.S. Moss, G.J. Burrel, and B. Ellis, Semiconductor opto-electronics, (Butterworth & Co. Ltd, England, 1973). https://doi.org/10.1016/C2013-0-04197-7
N.F. Mott, and E.A. Davis, Electronic processes in non-crystalline materials, (Clarendon Press, Oxford, 1971). https://doi.org/10.1063/1.3071145
A. Kulkarni, D. Guney, and A. Vora, Nanomaterials, 2013, 504341 (2013). http://dx.doi.org/10.1155/2013/504341
U.I. Erkaboev, G. Gulyamov, and R.G. Rakhimov, Indian J. Phys. 96, 2359 (2022). https://doi.org/10.1007/s12648-021-02180-4
U.I. Erkaboev, U.M. Negmatov, R.G. Rakhimov, J.I. Mirzaev, and N.A. Sayidov, Int. J. Appl. Sci. Eng. 19, 2021123 (2022). https://doi.org/10.6703/IJASE.202206_19(2).004
U.I. Erkaboev, and R.G. Rakhimov, East Eur. J. Phys. 3, 133 (2023). https://doi.org/10.26565/2312-4334-2023-3-10
U.I. Erkaboev and R.G. Rakhimov, e-Prime - Advances in Electrical Engineering, Electronics and Energy, 5, 100236 (2023). https://doi.org/10.1016/j.prime.2023.100236
U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, J.I. Mirzaev, and R.G. Rakhimov, E3S Web Conf. 401, 01090 (2023). https://doi.org/10.1051/e3sconf/202340101090
U.I. Erkaboev, N.A. Sayidov, U.M. Negmatov, J.I. Mirzaev, and R.G. Rakhimov, E3S Web Conf. 401, 04042 (2023). https://doi.org/10.1051/e3sconf/202340104042
U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov, and M. Abduxalimov. AIP Conf. Proc. 2789, 040055 (2023). https://doi.org/10.1063/5.0145554
L.V. Grigoriev, Silicon photonics (ITMO University, St. Petersburg, 2016). (in Russian)
U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov, and A. Mashrapov, AIP Conf. Proc. 2789, 040056 (2023). https://doi.org/10.1063/5.0145556
U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov and N.A. Sayidov, Ind. J. Phys. 98, 189 (2024). https://doi.org/10.1007/s12648-023-02803-y
U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov, and N.A. Sayidov, Int. J. Mod. Phys. B. 38, 2450185 (2024). https://doi.org/10.1142/S0217979224501856
G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev and N.A. Sayidov, Mod. Phys. Lett. B. 37, 2350015 (2023), https://doi.org/10.1142/S021798492350015X
D. Schoenberg, Magnetic oscillations in metals, (Wiley, New York, 1986). http://dx.doi.org/10.1017/CBO9780511897870
L.S. Stilbans, Physics of semiconductors, (Soviet Radio, Moscow, 1967). (in Russian)
A.V. Mikhailov, A.V. Trifonov, O.S. Sultanov, I.Yu. Yugova, and I.V. Ignatiev, Semiconductors, 56, 672 (2022).
U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov, and J.I. Mirzaev, Indian J. Phys. 2022, (2022). https://doi.org/10.1007/s12648-022-02435-8
Yu. Wang, N. Chen, Ch. Lu, and J. Chen, Phys. B, 406, 4300 (2011). https://doi.org/10.1016/j.physb.2011.08.071
Copyright (c) 2024 Ulugbek I. Erkaboev, Sherzodjon A. Ruzaliev, Rustamjon G. Rakhimov, Nozimjon A. Sayidov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).