Theoretical Investigation of Meson Spectrum via Exact Quantization Rule Technique

  • Etido P. Inyang Department of Physics, National Open University of Nigeria, Jabi, Abuja, Nigeria https://orcid.org/0000-0002-5031-3297
  • Fina O. Faithpraise Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria https://orcid.org/0000-0001-8222-2034
  • Joseph Amajama Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria
  • Eddy S. William Theoretical Physics Group, Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria https://orcid.org/0000-0002-5247-5281
  • Effiong O. Obisung Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria
  • Joseph E. Ntibi Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria bTheoretical Physics Group, https://orcid.org/0000-0002-7908-2840
Keywords: Cornell potential, Schrödinger equation, Exact Quantization Rule, Mesons

Abstract

The energy eigenvalues with the Extended Cornell potential were obtained by analytically solving the radial Schrödinger equation using the Exact Quantization Rule technique (ECP). It was then used for computing the mass spectra of the heavy mesons like charmonium (cc-) and bottomonium (bb-) as well as heavy-light mesons such as bottom-charm bc- and charm-Strange cs- for various quantum states. Two exceptional cases such as the Coulomb and Cornell potentials, were taken into consideration when some of the potential parameters were set to zero. The current potential offers good outcomes when compared to experimental data and work of other researchers with a maximum error of  0.0065 GeV.

Downloads

Download data is not yet available.

References

E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and I.O. Akpan, Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model, Molecular Physics. 119(23), e1956615 (2021) https://doi.org/10.1080/00268976.2021.1956615

E.P. Inyang, F. Ayedun, E.A. Ibanga, K.M. Lawal, I.B. Okon, E.S. William, O. Ekwevugbe, C.A. Onate, A.D. Antia, and E.O. Obisung, “Analytical Solutions of the N-Dimensional Schrödinger equation with modified screened Kratzer plus Inversely Quadratic Yukawa potential and Thermodynamic Properties of selected Diatomic Molecules”, Results in Physics, 43, 106075 (2022). https://doi.org/10.1016/j.rinp.2022.106075

M. Allosh, Y. Mustafa, N.K. Ahmed, and A.S. Mustafa, “Ground and Excited state mass spectra and properties of heavy-light mesons”, Few-Body Syst. 62, 26 (2021). https://doi.org/10.1007/s00601-021-01608-1

E. Omugbe, O.E. Osafile, I.B. Okon, E.S. Eyube, E.P. Inyang, U.S. Okorie, A. Jahanshir, and C.A. Onate, “Non-relativistic bound state solutions with -deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-information measures”, European Physical Journal D, 76, 72 (2022). https://doi.org/10.1140/epjd/s10053-022-00395-6

M. Abu-shady, C.O. Edet, and A.N. Ikot, “Non-relativistic Quark model under external magnetic and Aharanov-Bohm (AB) fields in the presence of Temperatur-Dependent confined Cornell potential”, Canadian Journal of Physics, 99(11), (2021) https://doi.org/10.1139/cjp-2020-0101

I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system”, Rev. Mex. Fis. 67, 483 (2021). https://doi.org/10.31349/revmexfis.67.482

R. Kumar, and F. Chand, “Asymptotic study to the N-dimensional Radial Schrodinder Equation for the quark-antiquark system”, Commun. in Theor. Phys. 59, 528 (2013). https://doi.org/10.1088/0253-6102/59/5/02

R. Kumar, R.M. Singh, S.B. Bhahardivaj, R. Rani, and F. Chand, “Analytical solutions to the Schrodinger equation for generalized Cornell potential and its application to diatomic molecules and heavy mesons”, Mod. Phys. Lett. A, 37, 2250010 (2022). https://doi.org/10.1142/S0217732322500109

M. Abu-Shady, “N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method”, J. Egypt. Math. Soc. 23, 4 (2016). https://doi.org/10.1016/j.joems.2016.06.006

J.P. Prasanth, K. Sebastian, and V.M. Bannur, “Revisiting Cornell potential model of the Quark-Gluon plasma”, Physica A, 558, 124921 (2020). https://doi.org/10.1016/j.physa.2020.124921

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons”, Few-Body Systems, 63, 7 (2022). https://doi.org/10.1007/s00601-021-01705-1

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method”, Mathematics, 10, 2824 (2022). https://doi.org/10.3390/math10152824

A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov –Functional Analysis (NUFA) Method: A new approach for solving exponential – Type potentials”, Few-Body System, 62, 9 (2021). https://doi.org/10.1007/s00601-021-021-01593-5

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrödinger equation with Hulthén plus screened Kratzer Potential using the Nikiforov–Uvarov – functional analysis (NUFA) method: an application to diatomic molecules”, Can. J. Phys. 100(10), 473 (2022). https://doi.org/10.1139/cjp-2022-003

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, “Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East European Journal of Physics, 2, 51 (2022). https://doi.org/10.26565/2312-4334-2022-2-05

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Revista Mexicana de Fisica, 68, 14 (2022). https://doi.org/10.31349/RevMexFis.68.020401

E.P. Inyang, E.P. Inyang, E.S. William, J.E. Ntibi, and E.A. Ibanga, “Bound State Solutions of the Schrödinger equation with Frost-Musulin potential using the Nikiforov-Uvarov-Functional Analysis (NUFA) method”, Bulg. J. Phys. 49(4), 329 (2022), https://doi.org/10.55318/bgjp.2022.49.4.329

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, “Exact solution of the N-dimensional Radial Schrödinger Equation via Laplace Transformation method with the Generalized Cornell potential”, Journal of theoretical Physics, 45, 567-587 (2018).

E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model”, Indian Journal of Physics, 96, 3461 (2022). https://doi.org/10.1007/s12648-0222-02308-0

E.P. Inyang, and E.O. Obisung, “The study of electronic states of NI and ScI molecules with screened Kratzer Potential”, East European Journal of Physics, 3, 32 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

E.S. William, E.P. Inyang, J.E. Ntibi, J.A. Obu, and E. P. Inyang, “Solutions of the Non-relativistic Equation Interacting with the Varshni-Hellmann potential model with some selected Diatomic molecules”, Jordan Journal of Physics, 15, 193 (2022). https://doi.org/10.47011/15.2.8

P.O. Okoi, C.O. Edet, T.O. Magu, and E.P. Inyang, “Eigensolution and Expectation values of the Hulthén and Generalized Inverse Quadratic Yukawa potential”, Jordan Journal of Physics, 15, 148 (2022). https://doi.org/10.47011/15.2.4

E.P. Inyang, A.N. Ikot, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E. Omugbe, and E.S. William, “Analytic study of thermal properties and masses of heavy mesons with quarkonium potential”, Result in Physics, 39, 105754 (2022). https://doi.org/10.1016/j.rinp.2022.105754

E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon, “Non-Relativistic study of mass spectra and thermal properties of a quarkonium system with Eckart-Hellmann potential”, East European Journal of Physics, 3, 114 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method”, European Journal of Applied Physics, 2, 26 (2020). http://dx.doi.org/10.24018/ejphysics.2020.2.6.26

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthen –screened Kratzer potential: Application to diatomic molecules”, East European Journal of Physics, 1, 11 (2022). https://doi.org/10.26565/2312-4334-2022-2-02

E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, “Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential for a Quarkonium system. Bulletin of Pure and Applied Sciences”, 40, 24 (2021). https://doi.org/10.5958/2320-3218.2021.0002.6

E.M. Khokha, M. Abushady, and T.A. Abdel-Karim, “Quarkonium Masses in the N-dimensional Space Using the Analytical Exact Iteration Method”, https://doi.org/10.48550/arXiv.1612.08206

E. Omugbe, O.E. Osafile, and M.C. Onyeajh, “Mass spectrum of mesons via WKB Approximation method”, Advances in High Energy Physics, 2020, 5901464 (2020). https://doi.org/10.1155/2020/5901464

E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods”, Physica Scripta, 96(12), 125408 (2021). https://doi.org/10.1088/1402-4896/ac38d4

E. Omugbe, “Non-relativistic energy spectrum of the Deng-Fan Oscillator via the WKB Approximation method”, Asian Journal of Physical and Chemical Sciences, 8, 26 (2020). https://doi.org/10.9734/ajopacs/2020/v8i130107

M. Abu-Shady, and E.P. Inyang, “Heavy-Light Meson masses in the Framework of Trigonometric Rosen-Morse Potential using the Generalized Fractional Derivative”, East Eur. J. Phys. 4, 80 (2022). https://doi.org/10.26565/23124334-2022-4-06

E.E. Ibekwe, J.B. Emah, E.P. Inyang, and A.O. Akpan, “MASS Spectrum of Heavy Quarkonium for Combined Potentials (Modified Kratzer Plus Screened Coulomb Potential)”, Iran J. Sci. Technol. Trans. Sci. 46, 1741 (2022). https://doi.org/10.1007/s40995-022-01377-4

M. Abu-Shady, and S.Y. Ezz-Alarab, “Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM”, Few-Body Systems, 60, 66 (2019). https://doi.org/10.1007/s00601-019-1531-y

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework”, Jordan Journal of Physics, 14, 345 (2021). https://doi.org/10.47011/14.4.8

A. Vega, and J. Flores, “Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics”, Pramana-J. Phys. 87, 73 (2016). http://doi.org/10.1007/s12043-016-1278-7

H. Ciftci, and H.F. Kisoglu, “Nonrelativistic-Arbitrary l-states of quarkonium through Asymptotic Iteration method”, Advances in High Energy Physics, 2018, 4549705 (2018). http://doi.org/10.1155/2018/4549705

A. Al-Jamel, and H. Widyan, “Heavy Quarkonium Mass Spectra in A Coulomb Field Plus Quadratic Potential Using Nikiforov-Uvarov Method”,Appl. Phys. Research, 4, (2012). https://doi.org/10.5539/apr.v4n3p94

A. Al-Oun, A. Al-Jamel, and H. Widyan, “Various Properties of Heavy Quarkonia from Flavor-Independent Coulomb Plus Quadratic Potential”, Jordan J. Phys. 8, 203 (2015). https://journals.yu.edu.jo/jjp/JJPIssues/Vol8No4pdf2015/2.pdf

E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E. S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”, Indian Journal of Physics, 95(12), 2733 (2021) https://doi.org/10.1007/s12648-020-01933-x

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential(SKP) using series expansion method”, Eur. Phys. J. Plus, 87, 136 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

Z.Q. Ma, and B.W. Xu, “Quantum correction in exact quantization rules”, Europhys. Lett. 69, 685 (2005). https://doi.org/10.1209/epl/i2004-10418-8

Z.Q. Ma, and B.W. Xu, “Quantum correction in exact quantization rules”, Int. J. Mod. Phys. E, 14, 599 (2005) https://doi.org/10.1209/epl/i2004-10418-8

E.S. William, E.P. Inyang, and E.A. Thompson, “Arbitrary l -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model”, Revista Mexicana Fisica, 66, 730 (2020). https://doi.org/10.31349/RevMexFis.66.730

E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, “Masses and thermal properties of a charmonium and Bottomonium mesons”, J. Nig. Soc. Phys. Sci. 4, 884 (2022). https://doi.org/10.46481/jnsps.2022.884

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium system”, Canadian Journal Physics, 99, 990 (2021). https://doi.org/10.1139/cjp-2020-0578

M.S. Ali, G.S. Hassan, A.M. Abdelmonem, S.K. Elshamndy, F. Elmasry, and A.M. Yasser, “The spectrum of charmed quarkonium in non-relativistic quark model using matrix Numerov’s method”, Journal of Radiation Research and Applied Sciences, 13(1), 233 (2020). https://doi.org/10.1080/16878507.2020.1723949

R. Olive, D.E. Groom, and T.G. Trippe, Particle Data Group, Chin. Phys. C, 38, 60 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

M. Tanabashi, C.D. Carone, T.G. Trippe, and C.G. Wohl, “Particle Data Group”, Phys. Rev. D, 98, 546 (2018).

C. Patrignani, “Review of particle physics”, Chin. Phys. C, 40, 100 (2016). http://hdl.handle.net/20.500.12386/25063

S. Godfrey, and K. Moats, D∗sJ(2860) mesons as excited D-wave c¯s states, Phys. Rev. D, 92, 119903 (2015). https://doi.org/10.1103/PhysRevD.92.119903

Published
2023-03-02
Cited
How to Cite
Inyang, E. P., Faithpraise, F. O., Amajama, J., William, E. S., Obisung, E. O., & Ntibi, J. E. (2023). Theoretical Investigation of Meson Spectrum via Exact Quantization Rule Technique . East European Journal of Physics, (1), 53-62. https://doi.org/10.26565/2312-4334-2023-1-05