The Fractional Schrödinger Equation with the Generalized Woods-Saxon Potential

Keywords: generalized Fractional derivative, Schrödinger equation, Nikiforov-Uvarov method, Woods-Saxon potential

Abstract

The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential reported in [Phys. Rev. C, 72, 027001 (2005)] is extended to the fractional forms using the generalized fractional derivative and the fractional Nikiforov-Uvarov (NU) technique. Analytical solutions of bound states of the Schrodinger equation for the present potential are obtained in the terms of fractional Jacobi polynomials. It is demonstrated that the classical results are a special case of the present results at α=β=1. Therefore, the present results play important role in molecular chemistry and nuclear physics.

Downloads

Download data is not yet available.

References

R. Hilfer, Applications of fractional calculus in physics, (World Scientific, 2010).

J. Banerjee, U. Ghosh, S. Sarkar, S. Das, and Pramana, J. Phys. 88, 70 (2017). https://doi.org/10.1007/s12043-017-1368-1

M. Nouzid, M. Merad, and D. Baleanu, Few–Body Syst. 57, 265 (2016). https://arxiv.org/ftp/arxiv/papers/2103/2103.14064.pdf

N. Laskin, Phys. Rev. E, 62, 3135 (2000). https://doi.org/10.1103/PhysRevE.62.3135

N. Laskin, Phys. Lett. A, 268, 298 (2000). https://doi.org/10.1016/S0375-9601(00)00201-2

H. Karayer, D. Demirhan, and F. Buyukkilic, Commun. Theor. Phys. 66, 12 (2016). https://doi.org/10.1088/0253-6102/66/1/012

H. Karayer, D. Demirhan, and F. Buyukkilic, Adv. Theor. Math. Phys. 19, 701 (2015). https://arxiv.org/pdf/1703.03234.pdf

D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, (World Scientific, 2012).

A. Al-Jamel, Int. J. Mod. Phys. A, 34, 1950054 (2019). https://doi.org/10.1142/S0217751X19500544

M. Abu-Shady, Inter. J. Modern Phys. A, 34, 31, 1950201 (2019). https://doi.org/10.1142/S0217751X19502014

M. Abu-Shady, and Sh. Y. Ezz-Alarab. Few-Body Systems, 62, 13, (2021). https://doi.org/10.1007/s00601-021-01591-7

M. Abu-shady; Azar I. Ahmadov; He M. Fath-Allah; Vatan H. Badalov, Journal of Theoretical and Applied Physics, 16(3), 1 (2022). https://doi.org/10.30495/jtap.162225

W.S. Chung, J. Comput. Appl. Math. 290, 150 (2015). https://doi.org/10.1016/j.cam.2015.04.049

T. Tas, U. Ghosh, S. Sarkar, and S. Das, J. Math, Phys. 59, 022111 (2018). https://doi.org/10.1063/1.4999262

M. Abu-Shady, and M.K.A. Kaabar, Mathematical Problems in Engineering, 2021, (2021). https://doi.org/10.1155/2021/9444803

M. Abu-Shady, and M.K.A. Kaabar, Computational and Mathematical Methods in Medicine, 2022, 2138775 (2022). https://doi.org/10.1155/2022/2138775

M. Abu-Shady, and E.P. Inyang, East Eur. J. Phys. 4, 80-86 (2022). https://periodicals.karazin.ua/eejp/article/view/20419

M. Abu-Shady, and E.M. Khokha, Molecular Physics, 120:24 (2022), https://doi.org/10.1080/00268976.2022.2140720

M. Abu-Shady et al. “Fractional Effective Quark-Antiquark Interaction in Symplectic Quantum Mechanics”, (2022). https://doi.org/10.48550/arXiv.2209.12083

R.D. Woods, and D.S. Saxon, Phys. Rev. 95, 577 (1954). https://doi.org/10.1103/PhysRev.95.577

N. Wang, and W. Scheid, Phys. Rev. C, 78, 014607 (2008). https://doi.org/10.1103/PhysRevC.78.014607

S. Ikhdair, and R. Sever, Open Physics, 8(4), 52-666 (2010). https://doi.org/10.2478/s11534-009-0118-5

S. Ikhdair, B.J. Falaye, and M. Hamzavi, Chinese Phys. Lett. 30, 020305 (2013). https://doi.org/10.1088/0256-307X/30/2/020305

C. Berkdemir, A. Berkdemir, and R. Sever, Phys. Rev. C, 72(2), 027001 (2005). https://doi.org/10.1103/PhysRevC.72.027001

C.M. Perey, F.G. Perey, J.K. Dickens, and R.J. Silva, Phys. Rev. 175, 1460 (1968). https://doi.org/10.1103/PhysRev.175.1460

M. Abu-Shady, and A.N. Ikot, Eur. Phys. J. Plus, 134, 321 (2019). https://doi.org/10.1140/epjp/i2019-12685-y

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, Advances in High Energy Physics, 2018, 7356843 (2018). https://doi.org/10.1155/2018/7356843

M. Abu-Shady, H.M. Mansour, and A.I. Ahmadov, Advances in High Energy Physics, 2019, 4785615 (2019). https://doi.org/10.1155/2019/4785615

S.B. Doma, M. Abu-Shady, F.N. El-Gammal, and A. Amer, Molecular Physics, 114, 11 1787 (2016). https://doi.org/10.1080/00268976.2016.1154198

E.P. Inyang, and E.O. Obisung. East Eur. J. Phys. 3, 32 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, East Eur. J. Phys. 2, 51 (2022). https://doi.org/10.26565/2312-4334-2022-2-05

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, East Eur. J. Phys. 2, 12 (2022). https://doi.org/10.26565/2312-4334-2022-2-02

E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, J. Nig. Soc. Phys. Sci. 4 (2022) https://doi.org/884.10.46481/jnsps.2022.884

E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon, East Eur. J. Phys. 3, 114 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

E.P. Inyang, E.O. Obisung, J. Amajama, D.E. Bassey, E.S. William, and I.B. Okon, Eurasian Physical Technical Journal, 19, (4 (42)), (2022) 78-87. https://doi.org/10.31489/2022No4/78-87

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Canadian J. Phys. (2021). https://doi.org/10.1139/cjp-2020-0578

E.P. Inyang, J. Ntibi, E.A. Ibanga, F. Ayedun, E.P. Inyang, and E.S. William, AIP Conference Proceedings, 2679, 030003 (2023). https://doi.org/10.1063/5.0112829

E.E. Ibekwe, J.B. Emah, E.P. Inyang, and A.O. Akpan, Iran J. Sci. Technol Trans Sci. (2022). https://doi.org/10.1007/s40995-022-01377-4

F. Ayedun, E.P. Inyang, E.A. Ibanga, and K.M. Lawal. East Eur. J. Phys. 4, 87 (2022). https://doi.org/10.26565/2312-4334-2022-4-06

E.E. Ibekwe, E.P. Inyang, J.B. Emah, J.B. Akpan, and O.J. Yawo, Sri Lankan Journal of Physics, 23(2), 63–76 (2022). https://doi.org/10.4038/sljp.v23i2.8119

Published
2023-03-02
Cited
How to Cite
Abu-Shady, M., & Inyang, E. P. (2023). The Fractional Schrödinger Equation with the Generalized Woods-Saxon Potential. East European Journal of Physics, (1), 63-68. https://doi.org/10.26565/2312-4334-2023-1-06