Comparative Study of the Mass Spectra of Heavy Quarkonium System with an Interacting Potential Model

  • Joseph A. Obu Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria https://orcid.org/0000-0001-9633-4045
  • Etido P. Inyang Department of Physics, National Open University of Nigeria, Jabi, Abuja, Nigeria https://orcid.org/0000-0002-5031-3297
  • Eddy S. William Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria https://orcid.org/0000-0002-5247-5281
  • Donatus E. Bassey Department of Physics, University of Calabar, Calabar, Nigeria https://orcid.org/0000-0002-0296-7878
  • Ephraim P. Inyang Theoretical Physics Group, Department of Physics, University of Calabar, Calabar, Nigeria
Keywords: Schrödinger equation, Nikiforov-Uvarov method, Class of Yukawa potential, Mass Spectra, Series expansion method

Abstract

In this work, the comparison of the mass spectra of heavy quarkonium system with an interacting potential (Class of Yukawa potential) was studied. The Schrodinger equation is analytically solved using Nikiforov- Uvarov (NU) method and series expansion method (SEM). The approximate solutions of the eigen energy equation and corresponding eigenfunction in terms of Laguerre polynomials were obtained using the NU method and the solutions of the eigen energy equation were also obtained with the SEM. The mass spectra for heavy quarkonium system (HQS) for the potential under study were obtained for bottomonium  and charmonium  HQS. We compared the results obtained between NU and SEM. It was noticed that SEM solutions yield mass spectra very close to experimental data compared to solutions with NU method. The obtained results were also compared with works by some other authors and were found to be improved. This study can be extended by using other exponential-type potential models with other analytical approach and a different approximation schemes to obtain the mass spectra of heavy quarkonium system. The relativistic properties using Klein-Gordon or Dirac equations can be explored to obtain the mass spectra of light quarkonia. Finally, the information entailed in the normalized wave-functions can also be studied.

Downloads

Download data is not yet available.

References

C. Mike, G. Geoff, & M. Chris, Advanced Level Physics (2nd ed.), (Hodder Education, Hachette UK company, 2014). pp. 243 248.

K.S. Krane, Introductory Nuclear Physics, (John Wiley & Sons,1987). pp. 1123-1213.

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Masses and thermodynamic properties of a Quarkonium system. Canadian Journal of Physics. 99(11),982-990 (2021). https://doi.org/10.1139/cjp-2020-0578

P. Amore et al., Analytical approximations to the spectra of quark–antiquark potentials, J. Phys. G: Nucl. Part. Phys. 32, 1061 (2006). https://doi.org/10.1088/0954-3899/32/7/014

A. Mocsy, “Can quarkonia survive deconfinement?”, Phys. Rev. D, 77, 45-55 (2008). https://doi.org/10.1103/PhysRevD.77.014501

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework,” Jord. J. Phys. 14, 339-345 (2021). https://doi.org/10.47011/14.4.8

T. Matsui, and H. Satz, “J/φ suppression by quark-gluon plasma formation,” Physics Letters B, 178(4), 416-422 (1986). https://doi.org/10.1016/0370-2693(86)91404-8

A. Mira-Cristiana, “Yukawa: The man and the potential,” Didactica Mathematica, 33, 1-9 (2015). https://www.researchgate.net/profile/Mira-Cristiana-Anisiu/publication/309807406_Yukawa_the_man_and_the_potential/links/582439cc08aeebc4f898aaf6/Yukawa-the-man-and-the-potential.pdf

E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, “Masses and thermal properties of a charmonium and Bottomonium mesons”, J. Nig. Soc. Phys. Sci. 4, 884 (2022). https://doi.org/10.46481/jnsps.2022.884

A. Mocsy, “Potential models for quarkonia,” The European Physical Journal, 61, 705-710 (2009). https://doi.org/10.1140/epjc/s10052-008-0847-4

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, “Quark-antiquark study with inversely quadratic Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East European Journal of Physics, 2, 51 (2022). https://doi.org/10.26565/2312-4334-2022-2-05

M. Abu-Shady, “N-dimensional Schrodinger equation at finite temperature using the Nikiforov-Uvarov method,” J. Egypt. Math. Soc. 23, 1-4 (2016). https://doi.org/10.1016/j.joems.2016.06.006

M. Abu-Shady, and H.M. Fath-Allah, “The effect of extended Cornell potential on heavy and heavy-light meson masses using series method,” Journal of the Egyptian mathematical society, 23(2), 156-165 (2019). https://arxiv.org/abs/1908.09131

E.P. Inyang, F.O. Faithpraise, J. Amajama, E.S. William, E.O. Obisung, J.E. Ntibi, “Theoretical Investigation Of Meson Spectrum Using Exact Quantization Rule Technique,” East European Journal of Physics, 1, 53-62 (2023). https://doi.org/10.26565/2312-4334-2023-1-05

P.O. Okoi, C.O. Edet, T.O. Magu, and E.P. Inyang, “Eigensolution and Expectation values of the Hulthén and Generalized Inverse Quadratic Yukawa potential,” Jordan Journal of Physics, 15, 137-148 (2022). https://doi.org/10.47011/15.2.4

E.S. William, E.P. Inyang, and E.A. Thompson, “Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model,” Rev. Mex. Fis. 66, 730 (2020). https://doi.org/10.31349/RevMexFis.66.730

E.E. Ibekwe, E.P. Inyang, J.B. Emah, J.B. Akpan, and O.J. Yawo, “Mass spectra and thermal properties of deformed Schrödinger Equation for pseudoharmonic potential,” Sri Lankan Journal of Physics, 23(2), 63–76 (2022). https://doi.org/10.4038/sljp.v23i2.8119

E.P. Inyang, E.S. William, and J.A. Obu, “Eigensolutions of the N-dimensional Schrödinger equation` interacting with Varshni-Hulthen potential model,” Rev. Mexi. Fis. 67, 193 (2021). https://doi.org/10.31349/RevMexFis.67.193

E.S. William, E.P. Inyang, I.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation values of selected diatomic molecules via Varshni plus modified Kratzer potential model,” Indian Journal of Physics, 96, 3461 3476 (2022). https://doi.org/10.1007/s12648-022-02308-0

E.P. Inyang, A.N. Ikot, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E. Omugbe, and E.S. William, “Analytic study of thermal properties and masses of heavy mesons with quarkonium potential”, Result in Physics, 39, 105754 (2022). https://doi.org/10.1016/j.rinp.2022.105754

E.P. Inyang, and E.O. Obisung, “The study of electronic states of NI and ScI molecules with screened Kratzer Potential,” East Eur. J. Phys. 3, 32 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and I.O. Akpan, “Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model,” Molecular Physics, 119(23), e1956615 (2021). https://doi.org/10.1080/00268976.2021.1956615

E.S. William, E.P. Inyang, J.E. Ntibi, J.A. Obu, and E.P. Inyang, “Solutions of the Non-relativistic Equation Interacting with the Varshni-Hellmann potential model with some selected Diatomic molecules,” Jordan Journal of Physics, 15, 179-193 (2022). https://doi.org/10.47011/15.2.8

E.P. Inyang, F. Ayedun, E.A. Ibanga, K.M. Lawal, I.B. Okon, E.S. William, O. Ekwevugbe, C.A. Onate, A.D. Antia, and E.O. Obisung, “Analytical Solutions of the N-Dimensional Schrödinger equation with modified screened Kratzer plus Inversely Quadratic Yukawa potential and Thermodynamic Properties of selected Diatomic Molecules,” Results in Physics, 43, 106075 (2022). https://doi.org/10.1016/j.rinp.2022.106075

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method,” Mathematics, 10, 2824 (2022). https://doi.org/10.3390/math10152824

A.N. Ikot, L.F. Obagboye, U.S. Okorie, E.P. Inyang, P.O. Amadi, and A. Abdel-Aty, Solutions of Schrodinger equation with generalized Cornell potential (GCP) and its applications to diatomic molecular systems in D-dimensions using Extended Nikiforov–Uvarov (ENU) formalism,” The European Physical Journal Plus, 137, 1370 (2022). https://doi.org/10.1140/epjp/s13360-022-03590-x

A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov –Functional Analysis (NUFA) Method: A new approach for solving exponential – Type potentials,” Few-Body System, 62, 9 (2021). https://doi.org/10.1007/s00601-021-021-01593-5

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrödinger equation with Hulthén plus screened Kratzer Potential using the Nikiforov–Uvarov – functional analysis (NUFA) method: an application to diatomic molecules,” Can. J. Phys. 100(10), 473 (2022). https://doi.org/10.1139/cjp-2022-003

E.P. Inyang, E.P. Inyang, E.S. William, J.E. Ntibi, and E.A. Ibanga, “Bound State Solutions of the Schrödinger equation with Frost-Musulin potential using the Nikiforov-Uvarov-Functional Analysis (NUFA) method,” Bulg. J. Phys. 49(4), 329-339 (2022). https://doi.org/10.55318/bgjp.2022.49.4.329

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Rev. Mex. Fis. 68, 020401 (2022). https://doi.org/10.31349/RevMexFis.68.020401

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, “Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method”, European Journal of Applied Physics, 2, 26 (2020). http://dx.doi.org/10.24018/ejphysics.2020.2.6.26

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthén-screened Kratzer potential: Application to diatomic molecules,” East European Journal of Physics, 1, 12-22 (2022). https://doi.org/10.26565/2312-4334-2022-2-02

E.P. Inyang, J.E. Ntibi, O.O. Akintola, E.A. Ibanga, F. Ayedun, and E.S. William, “Analytical solutions to the Schrödinger Equation with a Combined Potential using the Series Expansion Method to Study Selected Diatomic Molecules,” Communication in Physical Science, 8(2), 258-276 (2022). https://journalcps.com/index.php/volumes/article/view/279/244

E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, “Analytical solutions of Schrodinger equation with Kratzer-screened Coulomb potential for a Quarkonium system. Bulletin of Pure and Applied Sciences,” 40, 24 (2021). https://doi.org/10.5958/2320-3218.2021.0002.6

E. Omugbe, “Non-relativistic energy spectrum of the Deng-Fan Oscillator via the WKB Approximation method”, Asian Journal of Physics and Chemistry, 8(1), 26-36 (2020). https://doi.org/10.9734/ajopacs/2020/v8i130107

E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods,” Phys. Scr. 96(12), 125408 (2021). https://doi.org/10.1088/1402-4896/ac38d4

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any - state Energy of the Spinless Salpter Equation under the Cornell potential by the WKB Approximation method: An Application to mass Spectra of Mesons,” Few-Body Systems, 63(1), 1-7 (2022). https://doi.org/10.1007/s00601-021-01705-1

M. Abu-Shady, and E.P. Inyang, “The fractional Schrödinger equation with the generalized Woods-Saxon potential,” East European Journal of Physics, 1, 63-68 (2023). https://doi.org/10.26565/2312-4334-2023-1-06

E.P. Inyang, E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method,” Ind. J. Phys. 95, 2733–2739 (2021). https://doi.org/10.1007/s12648-020-01933-x

I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system,” Rev. Mex. Fis. 67, 482-490 (2021). https://doi.org/10.31349/revmexfis.67.482

E.E. Ibekwe, J.B. Emah, E.P. Inyang, and A.O. Akpan, “MASS Spectrum of Heavy Quarkonium for Combined Potentials (Modified Kratzer Plus Screened Coulomb Potential),” Iran J. Sci. Technol. Trans. Sci. 46, 1741-1748 (2022). https://doi.org/10.1007/s40995-022-01377-4

M. Abu-Shady, and E.P. Inyang, “Heavy-Light Meson masses in the Framework of Trigonometric Rosen-Morse Potential using the Generalized Fractional Derivative,” East Eur. J. Phys. 4, 80-87 (2022). https://doi.org/10.26565/2312-4334-2022-4-06

H.M. Yukawa, “On the Interaction of Elementary Particles.” Proc. Phys. Math. Soc. Jap. 17, 48-57 (1935). https://doi.org/10.11429/ppmsj1919.17.0_48

H. Hellmann, “A New Approximation Method in the Problem of Many Electrons,” J. Chem. Phys. 3, 61 (1935). https://doi.org/10.1063/1.1749559

B.I. Ita, and A.I. Ikeuba, “Solution to the Schrodinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov-Uvarov method”, Journal of Atomic and Molecular Physics, 2013, 582610 (2013). http://dx.doi.org/10.1155/2013/582610

C.A. Onate, and J.O. Ojonubah, “Eigensolutions of the Schrodinger equation with a class of Yukawa Potentials via supersymmetric approach,” Journal of theoretical and applied Physics, 19, 679-685 (2016). https://doi.org/10.1007/s40094-015-0196-2

G. Sezgo, Orthogonal Polynomials, (American Mathematical Society, New York, 1934), pp. 345-346.

S.K. Nikiforov, and V.B. Uvarov, Special functions of mathematical Physics, (Birkhauser, Basel, 1988).

R. Rani, S.B. Bhardwaj, and F. Chand, “Bound state solutions to the Schrodinger equation for some diatomic molecules,” Pramana Journal of Physics, 91, 1602-1615 (2018). https://doi.org/10.1007/s12043-018-1622-1

F. Ayedun, E.P. Inyang, E.A. Ibanga, and K.M. Lawal, “Analytical Solutions to The Schrödinger Equation with Collective Potential Models: Application to Quantum Information Theory,” East Eur. J. Phys. 4, 87-98 (2022). https://doi.org/10.26565/2312-4334-2022-4-06

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method,” European Physical Journal Plus, 87, 11 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

E.P. Inyang, J. Ntibi, E.A. Ibanga, F. Ayedun, E.P. Inyang, and E.S. William, “Thermal Properties, Mass Spectra and Root Mean Square Radii of Heavy Quarkonium System with Class of Inversely Quadratic Yukawa Potential,” AIP Conference Proceedings 2679, 030003 (2023). https://doi.org/10.1063/5.0112829

E.P. Inyang, E.O .Obisung, J. Amajama, E.S William, and I.B. Okon, “The Effect of Topological Defect on the Mass Spectra of Heavy and Heavy-Light Quarkonia,” Eurasian Physical Technical Journal, 19(4), 78-87 (2022). https://doi.org/10.31489/2022No4/78-87

E.P. Inyang, E.O. Obisung, E.S. William and I.B. Okon, Non-Relativistic study of mass spectra and thermal properties of a quarkonium system with Eckart-Hellmann potential. East European Journal of Physics, 3, 104-114 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

R. Olive, D.E. Groom, and T.G. Trippe, Particle Data Group, Chin. Phys. C, 38, 60 (2014).

M. Tanabashi, C.D. Carone, T.G. Trippe, and C.G. Wohl, Particle Data Group, Phys. Rev. D, 98, 546 (2018).

Published
2023-09-04
Cited
How to Cite
Obu, J. A., Inyang, E. P., William, E. S., Bassey, D. E., & Inyang, E. P. (2023). Comparative Study of the Mass Spectra of Heavy Quarkonium System with an Interacting Potential Model. East European Journal of Physics, (3), 146-157. https://doi.org/10.26565/2312-4334-2023-3-11

Most read articles by the same author(s)