Heavy-Light Meson Masses in the Framework of Trigonometric Rosen-Morse Potential Using the Generalized Fractional Derivative

Keywords: Trigonometric Rosen-Morse potential, Extended Nikiforov-Uvarov method, Generalized fractional derivative

Abstract

Trigonometric Rosen-Morse Potential is employed as a mesonic potential interaction. The extended Nikiforov-Uvarov method is used to solve the N-radial Fractional Schrödinger equation analytically. Using the generalized fractional derivative, the energy eigenvalues are obtained in fractional forms. The current findings are used to calculate the masses of mesons such as charmonium, bottomonium, and heavy-light mesons. The current findings are superior to those of other recent studies and show good agreement with experimental data as a result, the fractional parameter is crucial in optimizing meson masses.

Downloads

Download data is not yet available.

References

M. Abu-shady, and Rashdan, Phys. Rev. C, 81, 015203 (2010). https://doi.org/10.1103/PhysRevC.81.015203

M. Abu-shady, and H.M. Mansour, Phys. Rev. C, 85, 055204 (2012). https://doi.org/10.1103/PhysRevC.85.055204

M. Rashdan, M. Abu-Shady, and T.S.T. Ali, Int. Mod. Phys. A, 22, 2673 (2007). https://doi.org/10.1142/S0217751X07036178

M. Rashdan, M. Abu-Shady, and T.S.T. Ali, Int. Mod. Phys. E, 15, 143 (2006). https://doi.org/10.1142/S0218301306003965

E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon. East European Journal of Physics, 3, 104 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

M. Abu-Shady, and S.Y. Ezz-Alarb, Few-body systems, 60, 66 (2019). https://doi.org/10.1007/s00601-019-1531-y

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, Advances in High Energy Physics, 2018, 7356843 (2018). https://doi.org/10.1155/2018/7356843

M. Abu-Shady, and E.M. Khokha, Advances in High Energy Physics, 7032041 (2018). https://doi.org/10.1155/2018/7032041

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, Few-Body systems, 63, 7 (2022). https://doi.org/10.1007/s00601-021-01705-1

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, Jordan Journal of Physics, 14, 339 (2021). https://doi.org/10.47011/14.4.8

Al-Jamel, Int. J. Mod. Phys. A, 34, 1950054 (2019). https://doi.org/10.1142/S0217751X19500544

E.P. Inyang, and E.O. Obisung, East European Journal of Physics, 3, 38 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

H. Karayer, D. Demirhan, and F. Büyükk, Commun. Theor. Phys. 66, 12 (2018). https://doi.org/10.1088/0253-6102/66/1/012

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, Mathematics, 10(15), 2824 (2022). https://doi.org/10.3390/math10152824

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang. Canadian Journal of Physics, 100(10), 463 (2022). https://doi.org/10.1139/cjp-2022-0030

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, Eur. Phys. J. Plus, 136, 87 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

C.B.C. Jasso, and M. Kirchbach, AIP Conf. Proc. 857, 275 (2006). https://doi.org/10.1063/1.2359266

C.B.C. Jasso, and M. Kirchbach, J. Phys. A: Math. Gen. 39, 547 (2006).

U.A. Deta, Suparmi, Cari, A.S. Husein, H. Yulian, I.K.A. Khaled, H. Luqman, and Supriyanto, 4th. Inter. Conf. Adv. Nucl. Sci. Eng. 1615, 121-127 (2014). https://doi.org/10.1063/1.4895872

M. Abu-Shady, Inter. J. Mod. Phys. A, 34(31), 1950201 (2019). https://doi.org/10.1142/S0217751X19502014

M. Abu-Shady, and M.K.A. Kaabar, Mathematical Problems in Engineering, 2021, 9444803 (2021). https://doi.org/10.1155/2021/9444803

S. Sharma, Hindawi. Pub. Corp, 2013, 452978, (2013). https://doi.org/10.1155/2013/452978

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Canadian Journal Physics, 99, 990 (2021). https://doi.org/10.1139/cjp-2020-0578

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga and E.S. William, East European Journal of Physics, 2, (2022) 51. https://doi.org/10.26565/2312-4334-2022-2-05

R. Kumar, and F. Chand, Commun. Theor. Phys. 59, 528 (2013). https://doi.org/10.1088/0253-6102/59/5/02

N.V. Masksimenko, and S.M. Kuchin, Russ. Phys. J. 54, 57 (2011).

R. Kumar, and F. Chand, Phys. Scr. 85, 055008 (2012). https://doi.org/10.1088/0031-8949/85/05/055008

A.K. Ray, and P.C. Vinodkumar, Pramana J. Phys. 66, 953 (2006). https://doi.org/10.1007/BF02704795

E.J. Eichten, and C. Quigg, Phys. Rev. D, 49, 5845 (1994). https://doi.org/10.1103/PhysRevD.49.5845

D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Rev. D, 67, 014027 (2003). https://doi.org/10.1103/PhysRevD.67.014027

M. Tanabashi, et al, (Particle Data Group), "Review of Particle Physics". Physical Review D, 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

C. Patrignani, et al, (Particle data group), Chinese Physics C, 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

M. Abu-Shady, M.K.A. Kaabar, Computational and Mathematical Methods in Medicine, 2022, 2138775, (2022). https://doi.org/10.1155/2022/2138775

Citations

ANALYTICAL SOLUTION OF THE CLASS OF INVERSELY QUADRATIC YUKAWA POTENTIAL WITH APPLICATION TO QUANTUM MECHANICAL SYSTEMS
Inyang E.P. (2024) Eurasian Physical Technical Journal
Crossref

The Fractional Schrödinger Equation with the Generalized Woods-Saxon Potential
Abu-Shady Mohamed & Inyang Etido P. (2023) East European Journal of Physics
Crossref

Quantum information entropy and thermodynamics of the Eckart–Hellmann potential in the fractional nonrelativistic model
Abu-Shady M. & Ezz-Alarab Sh. Y. (2026) Modern Physics Letters A
Crossref

The Parametric Generalized Fractional Nikiforov-Uvarov Method and Its Applications
Abu-Shady M. & Fath-Allah H.M. (2023) East European Journal of Physics
Crossref

Spectrum of hybrid charmonium, bottomonium, and $$B_c$$ mesons by power series method
Akbar Nosheen, Zeeshan Ali, Arshad Sadia & Irfan Shaheen (2024) The European Physical Journal Plus
Crossref

Thermal Properties and Mass Spectra of Heavy Mesons in the Presence of a Point-Like Defect
Inyang Etido P., Ali Norshamsuri, Endut Rosdisham, Rusli Nursalasawati, Aljunid Syed Alwee, Ali N.R. & Muhammad Asjad Muhammad (2024) East European Journal of Physics
Crossref

Theoretical Investigation of Meson Spectrum via Exact Quantization Rule Technique
Inyang Etido P., Faithpraise Fina O., Amajama Joseph, William Eddy S., Obisung Effiong O. & Ntibi Joseph E. (2023) East European Journal of Physics
Crossref

Information theoretic measure under the field of a cotangent hyperbolic potential
Saadh Mohamed J., Alkhayyat Ahmad, Bains Pardeep Singh, Sharma Rohit, Elmasry Yasser Ahmed & Alahmadi Ahmad Aziz (2025) Modern Physics Letters A
Crossref

Determination of probability density, position and momentum uncertainties, and information theoretic measures using a class of inversely quadratic Yukawa potential
Inyang Etido P., Aouami A. E. L., Ali N., Endut R., Ali N. R. & Aljunid S. A. (2025) Scientific Reports
Crossref

On the fractional quark–antiquark confinement and symplectic quantum mechanics
Abu-Shady M., Luz R. R., Petronilo G. X. A., Santana A. E. & Amorim R. G. G. (2024) International Journal of Modern Physics A
Crossref

A precise estimation for vibrational energies of diatomic molecules using the improved Rosen–Morse potential
Abu-Shady M. & Khokha E. M. (2023) Scientific Reports
Crossref

Bound State and Ro-Vibrational Energies Eigenvalues of Selected Diatomic Molecules with a Class of Inversely Quadratic Yukawa Plus Hulthén Potential Model
Faithpraise Fina O. & Inyang Etido P. (2023) East European Journal of Physics
Crossref

Comparative Study of the Mass Spectra of Heavy Quarkonium System with an Interacting Potential Model
Obu Joseph A., Inyang Etido P., William Eddy S., Bassey Donatus E. & Inyang Ephraim P. (2023) East European Journal of Physics
Crossref

Investigation of heavy tetraquark states as di-meson molecules by solving the bethe–salpeter equation
Mousavi Muhammed Hossein & Alavijeh Parva Sadeghi (2026) Modern Physics Letters A
Crossref

Published
2022-12-06
Cited
How to Cite
Abu-Shady, M., & Inyang, E. P. (2022). Heavy-Light Meson Masses in the Framework of Trigonometric Rosen-Morse Potential Using the Generalized Fractional Derivative. East European Journal of Physics, (4), 80-86. https://doi.org/10.26565/2312-4334-2022-4-06