Heavy-Light Meson Masses in the Framework of Trigonometric Rosen-Morse Potential Using the Generalized Fractional Derivative

Keywords: Trigonometric Rosen-Morse potential, Extended Nikiforov-Uvarov method, Generalized fractional derivative


Trigonometric Rosen-Morse Potential is employed as a mesonic potential interaction. The extended Nikiforov-Uvarov method is used to solve the N-radial Fractional Schrödinger equation analytically. Using the generalized fractional derivative, the energy eigenvalues are obtained in fractional forms. The current findings are used to calculate the masses of mesons such as charmonium, bottomonium, and heavy-light mesons. The current findings are superior to those of other recent studies and show good agreement with experimental data as a result, the fractional parameter is crucial in optimizing meson masses.


Download data is not yet available.


M. Abu-shady, and Rashdan, Phys. Rev. C, 81, 015203 (2010). https://doi.org/10.1103/PhysRevC.81.015203

M. Abu-shady, and H.M. Mansour, Phys. Rev. C, 85, 055204 (2012). https://doi.org/10.1103/PhysRevC.85.055204

M. Rashdan, M. Abu-Shady, and T.S.T. Ali, Int. Mod. Phys. A, 22, 2673 (2007). https://doi.org/10.1142/S0217751X07036178

M. Rashdan, M. Abu-Shady, and T.S.T. Ali, Int. Mod. Phys. E, 15, 143 (2006). https://doi.org/10.1142/S0218301306003965

E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon. East European Journal of Physics, 3, 104 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

M. Abu-Shady, and S.Y. Ezz-Alarb, Few-body systems, 60, 66 (2019). https://doi.org/10.1007/s00601-019-1531-y

M. Abu-Shady, T.A. Abdel-Karim, and E.M. Khokha, Advances in High Energy Physics, 2018, 7356843 (2018). https://doi.org/10.1155/2018/7356843

M. Abu-Shady, and E.M. Khokha, Advances in High Energy Physics, 7032041 (2018). https://doi.org/10.1155/2018/7032041

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, Few-Body systems, 63, 7 (2022). https://doi.org/10.1007/s00601-021-01705-1

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, Jordan Journal of Physics, 14, 339 (2021). https://doi.org/10.47011/14.4.8

Al-Jamel, Int. J. Mod. Phys. A, 34, 1950054 (2019). https://doi.org/10.1142/S0217751X19500544

E.P. Inyang, and E.O. Obisung, East European Journal of Physics, 3, 38 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

H. Karayer, D. Demirhan, and F. Büyükk, Commun. Theor. Phys. 66, 12 (2018). https://doi.org/10.1088/0253-6102/66/1/012

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, Mathematics, 10(15), 2824 (2022). https://doi.org/10.3390/math10152824

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang. Canadian Journal of Physics, 100(10), 463 (2022). https://doi.org/10.1139/cjp-2022-0030

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, Eur. Phys. J. Plus, 136, 87 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

C.B.C. Jasso, and M. Kirchbach, AIP Conf. Proc. 857, 275 (2006). https://doi.org/10.1063/1.2359266

C.B.C. Jasso, and M. Kirchbach, J. Phys. A: Math. Gen. 39, 547 (2006).

U.A. Deta, Suparmi, Cari, A.S. Husein, H. Yulian, I.K.A. Khaled, H. Luqman, and Supriyanto, 4th. Inter. Conf. Adv. Nucl. Sci. Eng. 1615, 121-127 (2014). https://doi.org/10.1063/1.4895872

M. Abu-Shady, Inter. J. Mod. Phys. A, 34(31), 1950201 (2019). https://doi.org/10.1142/S0217751X19502014

M. Abu-Shady, and M.K.A. Kaabar, Mathematical Problems in Engineering, 2021, 9444803 (2021). https://doi.org/10.1155/2021/9444803

S. Sharma, Hindawi. Pub. Corp, 2013, 452978, (2013). https://doi.org/10.1155/2013/452978

E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Canadian Journal Physics, 99, 990 (2021). https://doi.org/10.1139/cjp-2020-0578

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga and E.S. William, East European Journal of Physics, 2, (2022) 51. https://doi.org/10.26565/2312-4334-2022-2-05

R. Kumar, and F. Chand, Commun. Theor. Phys. 59, 528 (2013). https://doi.org/10.1088/0253-6102/59/5/02

N.V. Masksimenko, and S.M. Kuchin, Russ. Phys. J. 54, 57 (2011).

R. Kumar, and F. Chand, Phys. Scr. 85, 055008 (2012). https://doi.org/10.1088/0031-8949/85/05/055008

A.K. Ray, and P.C. Vinodkumar, Pramana J. Phys. 66, 953 (2006). https://doi.org/10.1007/BF02704795

E.J. Eichten, and C. Quigg, Phys. Rev. D, 49, 5845 (1994). https://doi.org/10.1103/PhysRevD.49.5845

D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Rev. D, 67, 014027 (2003). https://doi.org/10.1103/PhysRevD.67.014027

M. Tanabashi, et al, (Particle Data Group), "Review of Particle Physics". Physical Review D, 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

C. Patrignani, et al, (Particle data group), Chinese Physics C, 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

M. Abu-Shady, M.K.A. Kaabar, Computational and Mathematical Methods in Medicine, 2022, 2138775, (2022). https://doi.org/10.1155/2022/2138775

How to Cite
Abu-Shady, M., & Inyang, E. P. (2022). Heavy-Light Meson Masses in the Framework of Trigonometric Rosen-Morse Potential Using the Generalized Fractional Derivative. East European Journal of Physics, (4), 80-86. https://doi.org/10.26565/2312-4334-2022-4-06