Fluorescence Study of the Interactions Between Insulin Amyloid Fibrils and Proteins
Abstract
Self-assembly of proteins and peptides into amyloid fibrils is the subject of intense research due to association of this process with multiple human disorders. Despite considerable progress in understanding the nature of amyloid cytotoxicity, the role of cellular components, in particular proteins, in the cytotoxic action of amyloid aggregates is still poorly investigated. The present study was focused on exploring the fibril-protein interactions between the insulin amyloid fibrils and several proteins differing in their structure and physicochemical properties. To this end, the fluorescence spectral properties of the amyloid-sensitive fluorescent phosphonium dye TDV have been measured in the insulin fibrils (InsF) and their mixtures with serum albumin (SA) in its native solution state, lysozyme (Lz) and insulin (Ins) partially unfolded at low pH. It was found that the binding of TDV to the insulin amyloid fibrils is followed by considerable increase of the fluorescence intensity. In the system (InsF + TDV) the TDV fluorescence spectra were decomposed into three spectral components centered at ~ 572 nm, 608 nm and 649 nm. The addition of SA, Lz or Ins to the mixture (InsF + TDV) resulted in the changes of the fluorescence intensity, the maximum position and relative contributions (f1,3) of the first and third spectral components into the overall spectra. The Förster resonance energy transfer between the TDV as a donor and a squaraine dye SQ1 as an acceptor was used to gain further insights into the interaction between the insulin amyloid fibrils and proteins. It was found that the presence of SA do not change the FRET efficiency compared with control system (InsF + chromophores), while the addition of Lz and Ins resulted in the FRET efficiency decrease. The changes in the TDV fluorescence response in the protein-fibril systems were attributed to the probe redistribution between the binding sites located at InsF, the non-fibrillized Ins, SA or Lz and protein-protein interface
Downloads
References
R. Gallardo, N.A Ranson, S.E Radford, Curr. Opin. Struct. Biol. 60, 7-16 (2020). https://doi.org/10.1016/j.sbi.2019.09.001.
V. Martorana, S. Raccosta, D. Giacomazza, L. A. Ditta, R. Noto, P. L. S. Biagio, M. Manno, Biophys. Chem. 253, 106231 (2019). https://doi.org/10.1016/j.bpc.2019.106231.
C.M. Dobson, Cold Spring Harb. Perspect. Biol. 9, a023648 (2017). https://doi.org/10.1101/cshperspect.a023648.
P. C. Ke, R. Zhou, L. C. Serpell, R. Riek, T. P. J. Knowles, H. A. Lashuel, E. Gazit, I. W. Hamley, T. P. Davis, M. Fӓndrich, D. E. Otzen, M. R. Chapman, C. M. Dobson, D. S. Eisenberg, R. Mezzenga, Chem. Soc. Rev. 49, 5473 5509 (2020). https://doi.org/10.1039/C9CS00199A.
O.S. Makin, L.C. Serpell, FEBS J. 272, 5950-5961 (2005). https://doi.org/10.1111/j.1742-4658.2005.05025.x.
R. Nelson, D. Eisenberg, Curr. Opin. Struct. Biol. 16, 260-265 (2006). https://doi.org/10.1016/j.sbi.2006.03.007.
Z. Wang, S. Kang, S. Cao, M. Krecker, V. Tsukruk, S. Singamaneni, MRS Bulletin 45, 1017-1026 (2020). https://doi.org/10.1557/mrs.2020.302.
T.P.J. Knowles, R. Mezzenga, Adv. Mater. 28, 6546-6561 (2016). https://doi.org/10.1002/adma.201505961.
M. Stefani, Biochim. Biophys. Acta, 1739, 5-25 (2004). https://doi.org/10.1016/j.bbadis.2004.08.004.
F. Chiti, C. M. Dobson, Annu. Rev. Biochem., 75, 333-366 (2006). https://doi.org/10.1146/annurev.biochem.75.101304.123901.
M. Bucciantini, S. Rigacci and M. Stefani, J. Phys. Chem. Lett., 5, 517-527 (2014). https://doi.org/10.1021/jz4024354.
S. M. Butterfield and H. A. Lashuel, Angew. Chem., Int. Ed.,2010, 49, 5628-5654. https://doi.org/10.1002/anie.200906670.
A. A. Meratan, A. Ghasemi and M. Nemat-Gorgani, J. Mol.Biol., 409, 826-838 (2011). https://doi.org/10.1016/j.jmb.2011.04.045.
B. Huang, J. He, J. Ren, X. Y. Yan and C. M. Zeng, Biochemistry, 48, 5794-5800 (2009). https://doi.org/10.1021/bi900219c.
B. Caughey, P. T. Lansbury, Annu. Rev. Neurosci., 6, 267-298 (2003). https://doi.org/10.1146/annurev.neuro.26.010302.081142.
E. Sparr, M. F. M. Engel, D. V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijf, J. W. M. Hoppener, J. A. Killian, FEBS Lett., 577, 117-120 (2004). https://doi.org/10.1016/j.febslet.2004.09.075.
M. F. Engel, L. Khemtemourian, C. C. Kleijer, H. J. Meeldijk,J. Jacobs, A. J. Verkleij, B. de Kruijff, J. A. Killian and J. W. Ho ¨ppener, Proc. Natl. Acad. Sci. U. S. A., 105,6033-6038 (2008). https://doi.org/10.1073/pnas.0708354105.
A. L. Gharibyan, V. Zamotin, K. Yanamandra, O. S.Moskaleva, B. A. Margulis, I. A. Kostanyan and L. A.Morozova-Roche, J. Mol. Biol., 365, 1337-1349 (2007). https://doi.org/10.1016/j.jmb.2006.10.101.
J.F. Brandts, L.J. Kaplan, Biochemistry 12, 2011-2024 (1973). https://doi.org/10.1021/bi00734a027.
M. Groenning, J. Chem. Biol. 3, 1-18 (2010). https://doi.org/10.1007/s12154-009-0027-5.
V.M. Ioffe, G.P. Gorbenko, T. Deligeorgiev, N. Gadjev, A. Vasilev, Biophys. Chem. 128, 75–86 (2007). https://doi.org/10.1016/j.bpc.2007.03.007.
M. Bacalum, B. Zorila, M. Radu, Anal. Biochem. 440, 123–129 (2013). https://doi.org/10.1016/j.ab.2013.05.031.
J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed., (Springer, New York, 2006).
G. Gorbenko, O. Zhytniakivska, K. Vus, U. Tarabara, V. Trusova, Phys. Chem. Chem. Phys. 23, 14746-14754 (2021), https://doi.org/10.1039/D1CP01359A.
I. M. Kuznetsova, A.I. Sulatskaya, V. N. Uversky, K. K. Turoverov, Mol. Neurobiol. 45, 488-498 (2012). https://doi.org/10.1007/s12035-012-8272-y.
H. Xie, C. Guo, Front. Mol. Biosci. 7, 629520 (2021). https://doi.org/10.3389/fmolb.2020.629520.
K. Siposova, M. Kubovcikova, Z. Bednarikova, M. Koneracka, V. Zavisova, A. Antosova, P. Kopcansky, Z. Daxnerova, Z. Gazova, Nanotechology, 23, 055101 (2012). https://doi.org/10.1088/0957-4484/23/5/055101.
U. Bohme, U. Scheder, Chem. Phys. Lett., 434, 342–345 (2007). https://doi.org/10.1016/j.cplett.2006.12.068.
G. Sudlow, D. J. Birkett, D.N. Wade, Mol. Pharmacol., 12, 1052–1061 (1976).
A. Samanta, S. Jana, D. Ray, N. Guchhait, Spectrochim. Acta. A, 121, 23-34 (2014). https://doi.org/10.1016/j.saa.2013.10.049.
V. S. Jisha, K. T. Arun, M. Hariharan, D. Ramaiah, J. Phys. Chem. B, 114, 5912-5919 (2010). https://doi.org/10.1021/jp100369x.
G. Gorbenko, V. Ioffe, P. Kinnunen, Biophys J., 93, 140-153 (2007). https://doi.org/10.1529/biophysj.106.102749.
G. Gorbenko, V. Ioffe, J. Molotkovsky, P. Kinnunen, Biochim. Biophys Acta, 1778, 1213-1221 (2008). https://doi.org/10.1016/j.bbamem.2007.09.027.
G. Ghosh, L. Panicker, K.C. Barick, 118, 1-6 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.026.
L. Li, W. Xu, H. Liang, L. He, S. Liu, Y. Li, B. Li, Y. Chen, 126, 459-466 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.051.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).