Nanomechanical Characterization of Apolipoprotein A-I Amyloid Fibrils

  • Valeriya Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • Kateryna Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine http://orcid.org/0000-0003-4738-4016
  • Olga Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-9554-0090
  • Uliana Tarabara Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • Hiroyuki Saito Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan https://orcid.org/0000-0003-1497-1425
  • Galyna Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine http://orcid.org/0000-0002-0954-5053
Keywords: amyloid fibrils, mechanical properties, worm-like model, atomic force microscopy, Easyworm

Abstract

Amyloid fibrils represent a special type of protein aggregates that are currently receiving enormous attention due to their strong implication in molecular etiology of a wide range of human disorders. Amyloid fibrils represent highly ordered self-assemblies sharing a core cross-β-sheet structure. Such organization of the fibrils is responsible for amyloid insolubility and exceptional mechanical properties. The remarkable rigidity of the protein fibrillar aggregates is due to intra- and interstrand hydrogen bonds which stabilize the β-strand scaffold of amyloid fibrils. Increasing evidence indicates that physical properties of amyloid assemblies, especially their mechanical characteristics, play essential role in determining their cytotoxic action. This highlights the necessity of deciphering the correlation between the elastic properties of amyloid aggregates and their cytotoxicity. In the present paper we utilized the atomic force microscopy (AFM) to visualize and analyze the amyloid fibrils of G26R/W@8 mutant of N-terminal fragment of human apolipoprotein A-I (apoA-I). The examination of AFM images revealed the existence of two polymorphic forms of apoA-I fibrils – twisted ribbon and helical ribbon. The quantitative analysis of apoA-I elastic properties was performed within the framework of worm-like model of polymer chain using the Easyworm software. The Easyworm package analyzes the images of individual polymer chains obtained by the atomic force microscopy and allows calculation of the persistent length of a chain in three regimes depending on the ratio between the contour and persistent lengths of the polymer. The set of evaluated parameters included the Young’s modulus, persistent length, bending rigidity and the second moment of inertia. All parameters calculated for the helical ribbon conformation were higher than those of the twisted ribbon. These findings suggest that helical ribbon represents a more rigid and mechanically stable configuration. The results obtained may prove of importance for a deeper understanding the mechanics-driven pathological activities of amyloid fibrils.

Downloads

Download data is not yet available.

References

J. Vaquer-Alicea, and M. Diamond, Annu. Rev. Biochem. 88, 785-810 (2019), https://doi.org/10.1146/annurev-biochem-061516-045049.

S. Khatun, A, Singh, D. Mandal, A. Chandra, and A. Gupta, Phys. Chem. Chem. Phys. 21, 20083-20094 (2019), https://doi.org/10.1039/C9CP03238J.

A. Buell, Biochem. J. 476, 2677-2703 (2019), https://doi.org/10.1042/BCJ20160868.

O. Galzitskaya, Curr. Protein Pept. Sci. 20, 630-640 (2019), https://doi.org/10.2174/1389203720666190125160937.

P. Arosio, T. Knowles, and S. Linse, Phys. Chem. Chem. Phys. 17, 7606-7618 (2015), https://doi.org/10.1039/c4cp05563b.

M. Jucker, and L. Walker, Nature 501, 45-51 (2013), https://doi.org/10.1038/nature12481.

S. Zhang, M. Andreasen, J. Nielsen, L. Liu, E. Nielsen, J. Song, G. Li et al., Proc. Natl. Acd. Sci. USA 110, 2798-2803 (2013), https://doi.org/10.1073/pnas.1209955110.

V. Trusova, Biophys. Rev. Lett. 10, 135-156 (2015), https://doi.org/10.1142/S1793048015300029.

J. Liu, M. Tian, and L. Shen, Chem. Commun. 56, 3147-3150 (2020), https://doi.org/10.1039/C9CC10079B.

R. Tycko, Neuron 86, 632-645 (2015), https://doi.org/10.1016/j.neuron.2015.03.017.

M. Kollmer, W. Close, L. Funk, J. Rasmussen, A. Bsoul, A. Schierhorn, M. Schmiddt et al., Nat. Commun. 10, 4760-4767 (2019), https://doi.org/10.1038/s41467-019-12683-8.

E. Adachi, H. Nakajima, C. Mizuguchi, P. Dhanasekaran, H. Kawashima, K. Nagao, K. Akaji et al., J. Biol. Chem. 288, 2848-2856 (2013), https://doi.org/10.1074/jbc.M112.428052.

M. Girych, G. Gorbenko, V. Trusova, E. Adachi, C. Mizuguchi, K. Nagao, H. Kawashima et al., J. Struct. Biol. 185, 116-124 (2014), https://doi.org/10.1016/j.jsb.2013.10.017.

C. Bouchiat, M. Wang, J.-F. Allemand, T. Strick, S. Block, and V. Croquette, Biophys. J. 76, 409-413 (1999), https://doi.org/10.1016/S0006-3495(99)77207-3.

I. Usov, and R. Mezzenga, ACS Nano 8, 11035-11041 (2014), https://doi.org/10.1021/nn503530a.

G. Lamour, J. Kirkegaard, H. Li, T. Knowles, and J. Gsponer, Source Code Biol. Med. 9, 16-21 (2014), https://doi.org/10.1186/1751-0473-9-16.

B. Choi, G. Yoon, S. Lee, and K. Eom, Phys. Chem. Chem. Phys. 17, 1379-1389 (2015), https://doi.org/10.1039/c4cp03804e.

J. Adamcik, J.-M. Jung, J. Flakowski, P. Rios, G. Dietler, and R. Mezzenga, Nat. Nanotech. 5, 423-428 (2010), https://doi.org/10.1038/NNANO.2010.59.

Published
2020-04-03
Cited
0 article
How to Cite
Trusova, V., Vus, K., Zhytniakivska, O., Tarabara, U., Saito, H., & Gorbenko, G. (2020). Nanomechanical Characterization of Apolipoprotein A-I Amyloid Fibrils. East European Journal of Physics, (2), 118-123. https://doi.org/10.26565/2312-4334-2020-2-11

Most read articles by the same author(s)