Experimental Investigation of Combustion Modes and Contraction of Glow Discharge in CF4

  • Valeriy Lisovskiy V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-6339-4516
  • O. Pelustka V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • V. Koval V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Keywords: DC glow discharge, contraction, diffuse mode of the discharge, dissociation, CF4

Abstract

This paper studies in experiment the diffuse and contracted modes of dc glow discharge in CF4. The existence region for the contracted mode with pressure unchanged is found to be limited from the small inter-electrode gap side, this boundary being multi-valued. A contracted column establishes in a stratified positive column with current increasing and inter-electrode gap or gas pressure fixed. However with subsequent current increase the length of the positive column decreases (with simultaneous considerable expansion of the negative glow), and contraction vanishes. At longer inter-electrode gap the current increase does not lead to contraction vanishing.

Downloads

Download data is not yet available.

References

Aydil E.S. Plasma Etching, in Encyclopedia of Applied Physics. - VCH Publishers. – 1996. - Vol.14. - P. 171-197.

Shul R.J., Pearton S.J. Handbook of Advanced Plasma Processing Techniques. – Berlin: Springer. - 2000. – 654 p.

Winters H.F., Coburn J.W. Surface science aspects of etching reactions// Surface Science Reports. – 1992. - Vol. 65, № 4-6. - P. 161-270.

Christophorou L.G., McCorkle D.L., Maxey D.V., Carter J.G. Fast gas mixtures for gas-filled particle detectors // Nuclear instruments and methods. – 1979. - Vol.163. – P. 141-149.

Christophorou L.G., Hunter S.R., Carter J.G., Mathis R.A. Gases for possible use in diffuse-discharge switches // Appl. Phys. Lett. – 1982. – Vol.41, No. 2. – P. 147-149.

Hunter S.R., Carter J.G., Christophorou L.G. Electron transport studies of gas mixtures for use in e-beam controlled diffuse discharge switches // J. Appl. Phys. – 1985. – Vol.58, No. 8. – P. 3001-3015.

Christophorou L.G., Olthoff J.K., Rao M.V.V.S. Electron interactions with CF4 // J. Phys. Chem. Ref. Data. – 1996. – Vol.25, No.5. – P. 1341-1388.

Hunter S.R., Carter J.G., Christophorou L.G. Electron motion in the gases CF4, C2F6, C3F8 and n-C4F10 // Phys. Rev. A. – 1988. – Vol.38, No. 1. – P. 58-69.

Christophorou L.G., Olthoff J.K. Electron interactions with plasma processing gasess: an update for CF4, CHF3, C2F6, and C3F8 // J. Phys. Chem. Ref. Data. – 1999. – Vol.28, No 4. – P. 967-982.

Vasenkov A.V. Monte Carlo simulation of electron transport in carbon tetrafluoride discharge plasma // J. Appl. Phys. – 2000. – Vol.88, No 2. – P. 626-634.

Torres I., Martinez R., Castano F. Electron-impact dissociative ionization of fluoromethanes CHF3 and CF4 // J. Phys. B: At. Mol. Opt. Phys. – 2002. – Vol.35, No 11. – P. 2423-2436.

Иванов В.В., Клоповский К.С., Лопаев Д.В., Прошина О.В., Рахимов А.Т., Рахимова Т.В., Словецкий Д.И., Волынец В.Н. Образование радикалов CF2 при диссоциации молекул CF4 электронным ударом в плазме газового разряда // Физика плазмы. – 1999. – т.25, № 8. – с. 716-724.

Coburn J.W., Chen M. Dependence of F atom density on pressure and flow rate in CF4 glow discharges as determined by emission spectroscopy // J. Vac. Sci. Technol. – 1981. – Vol.18, No 2. – P. 353-356.

Ishikawa I., Suganomata Sh., Matsumoto M. Attachment-enhanced instability in CF4 positive columns // / Jap. J. Appl. Phys. – 1987. – Vol.26, No 12. – P. 2140-2141.

Descoeudres A., Sansonnens L., Hollenstein Ch. Attachment-induced ionization instability in electronegative capacitive RF discharges // Plasma Sources Sci. Technol. – 2003. – Vol.12, No 2. – P. 152-157.

Scoro N., Malovic G., Maric D., Petrovic Z.Lj. Low-pressure breakdown and voltage-current characteristics of dc discharge in CF4 // Proc. 28th Intern. Conf. on Phenomena in Ionized Gases, July 15-20, 2007, Prague, P. 1997-2000.

Bozin S.E., Goodyear C.C. Growth of ionization currents in carbon tetrafluoride and hexafluoroethane // Brit. J. Appl. Phys. – 1968. – Vol.1. – P. 327-334.

Nema R.S., Kulkarni S.V., Husain E. On calculation of breakdown voltages of mixtures of electron attaching gases // IEEE Trans. Electrical Insulation. – 1982. – Vol.17, No 5. – P. 434-440.

Lisovskiy V.A., Yakovin S.D., Yegorenkov V.D. Low-pressure gas breakdown in uniform dc electric field // J. Phys. D: Appl. Phys. – 2000. - Vol. 31, No. 21. - P. 2722 - 2730.

Елецкий А.В. Механизмы сжатия тлеющего разряда // Химия плазмы, Вып. 9 (под ред. Смирнова Б.М.). – М.: Энергоиздат, 1982.  с. 151178.

Райзер Ю.П. Физика газового разряда. – М.: Наука, 1987. 592 с.

Lisovskiy V., Booth J.-P., Jolly J., Martins S., Landry K., Douai D., Cassagne V., Yegorenkov V. Modes of rf capacitive discharge in low-pressure sulfur hexafluoride // J. Phys. D: Appl. Phys. – 2007. - Vol. 40, No.22. - P. 6989–6999.

Lisovskiy V., Booth J.-P., Landry K., Douai D., Cassagne V., Yegorenkov V. Rf discharge dissociative mode in NF3 and SiH4 // J. Phys. D: Appl. Phys. – 2007. - Vol.40, No. 21. - P. 6631–6640.

Christophorou L.G., Olthoff J.K. Fundamental electron interactions with plasma processing gases. New York: Kluwer Academic, 2004. – 783 p.

Published
2012-02-24
Cited
How to Cite
Lisovskiy, V., Pelustka, O., & Koval, V. (2012). Experimental Investigation of Combustion Modes and Contraction of Glow Discharge in CF4. East European Journal of Physics, (991(1), 46-53. Retrieved from https://periodicals.karazin.ua/eejp/article/view/13857