Plasma Conversion of CO2 in DC Glow Discharge with Distributed Gas Injection and Pumping

  • Valeriy Lisovskiy V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Stanislav Dudin V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Pavlo Platonov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Vladimir Yegorenkov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Keywords: carbon dioxide, plasma conversion, dc glow discharge


Accumulation of carbon dioxide in the Earth's atmosphere leads to an increase in the greenhouse effect and, as a consequence, to significant climate change. Thus, the demand to develop effective technologies of carbon dioxide conversion grows year to year. Additional reason for research in this direction is the intention of Mars exploration, since 96% of the Martian atmosphere is just carbon dioxide, which can be a source of oxygen, rocket fuel, and raw materials for further chemical utilization. In the present paper, the plasma conversion of carbon dioxide have been studied in the dc glow discharge at the gas pressure of 5 Torr in a chamber with distributed gas injection and evacuation from the same side for the case of narrow interelectrode gap. The conversion coefficient and the energy efficiency of the conversion were determined using mass spectrometry of the exhaust gas mixture in dependence on CO2 flow rate and the discharge current and voltage. Maximum conversion rate was up to 78% while the energy efficiency of the conversion was always less than 2%. It was found that the discharge at this pressure can operate in normal and abnormal modes and the transition between the modes corresponds just to the maximum value of the conversion coefficient for a given gas flow. It was shown that even in anomalous regime, when the cathode is completely covered by the discharge, the discharge contraction occurs in whole range of parameters studied. The anode glow and the plasma column outside the cathode layer occupy the central part of the discharge only that reduces the conversion efficiency. Optical emission spectra from the carbon dioxide plasma were measured in the range of 200-1000 nm, which allowed to make a conclusion that the Oxygen atom emission is mostly origins from the exited atoms appearing after dissociation rather than after electron impact excitation.


Download data is not yet available.


R. Snoeckx, and A. Bogaerts, Chem. Soc. Rev. 46, 5805 (2017),

A. Bogaerts, and G. Centi, Frontiers in Energy Research. 8, 111 (2020),

P. Ogloblina, A.S. Morillo-Candas, A.F. Silva, T. Silva, A. Tejero-del-Caz, L.L. Alves, O. Guaitella, and V. Guerra, Plasma Sources Sci. Technol. 30 065005 (2021),

R. Aerts, W. Somers, and A. Bogaerts, Chem. Sus. Chem. 8, 702 (2015),

S. Paulussen, B. Verheyde, X. Tu, C. De Bie, T. Martens, D. Petrovic, A. Bogaerts, and B. Sels, Plasma Sources Sci. Technol. 19, 34015 (2010),

A. Ozkan, A. Bogaerts, and F. Reniers, J. Phys. D: Appl. Phys. 50, 84004 (2017),

S.R. Sun, H.X. Wang, D.H. Mei, X. Tu, and A. Bogaerts, J. CO2 Util. 17, 220 (2017),

T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A. Gutsol, and A. Kemoun, J. Phys. D: Appl. Phys. 2011, 44, 274009,

F. Ouni, A. Khacef and J. M. Cormier, Chem. Eng. Technol. 2006, 29, 604–609,

A. Fridman, Plasma chemistry, (Cambridge University Press, New York, 2008), pp. 978,

W. Bongers, H. Bouwmeester, B. Wolf, F. Peeters, S. Welzel, D. van den Bekerom, N. den Harder, A. Goede, M. Graswinckel, P.W. Groen, J. Kopecki, M. Leins, G. Van Rooij, A. Schulz, M. Walker, and R. van de Sanden, Plasma Processes Polym. 14, e1600126 (2017),

A.P.H. Goede, W.A. Bongers, M.F. Graswinckel, R.M.C.M. Van De Sanden, M. Leins, J. Kopecki, A. Schulz, and M. Walker, EPJ Web Conf. 79, 01005 (2014),

L.F. Spencer and A.D. Gallimore, Plasma Sources Sci. Technol. 22, 15019 (2013),

M.S. Bak, S.K. Im, and M. Cappelli, IEEE Trans. Plasma Sci. 43, 1002 (2015),

G. Horváth, J.D. Skalný, and N.J. Mason, J. Phys. D: Appl. Phys. 2008, 41, 225207,

T. Mikoviny, M. Kocan, S. Matejcik, N.J. Mason, and J.D. Skalny, J. Phys. D: Appl. Phys. 2004, 37, 64,

S.L. Suib, S.L. Brock, M. Marquez, J. Luo, H. Matsumoto, and Y. Hayashi, J. Phys. Chem. B, 102, 9661 (1998),

S.L. Brock, T. Shimojo, M. Marquez, C. Marun, S.L. Suib, H. Matsumoto, and Y. Hayashi, J. Catal. 184, 123 (1999),

V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov. Studying CO2 conversion in DC glow discharge, PAST, 6, 179 (2020),

L.F. Spencer, and A.D. Gallimore, Plasma Chem. Plasma Process. 31, 79 (2010),

V.D. Rusanov, A.A. Fridman, and G.V. Sholin, Sov. Phys. Usp. 24, 447 (1981),

S. Mori, A. Yamamoto, and M. Suzuki, Plasma Sources Sci. Technol. 15, 609 (2006),

S.V. Dudin, A.V. Zykov, and S.D. Yakovin, PAST, 4, 141 (2019),

S.V. Dudin, and A.N. Dakhov, PAST, 6, 194 (2018),

Y. Wen, and X. Jiang, Plasma Chem. Plasma Process. 21, 665 (2001),

P.P. Platonov, S.V. Dudin, and V.A. Lisovskiy, PAST, 1, 131 (2021),

V.A. Lisovskiy, V.A. Koval, and V.D. Yegorenkov, Physics Letters A, 375(19), 1986 (2011),

V.A. Lisovskiy, R.O. Osmayev, A.V. Gapon, S.V. Dudin, I.S. Lesnik, and V.D. Yegorenkov, Vacuum, 145, 19 (2017),

V.A. Lisovskiy, K.P. Artushenko, and V.D. Yegorenkov, PAST, 6, 223 (2016),

How to Cite
Lisovskiy, V., Dudin, S., Platonov, P., & Yegorenkov, V. (2021). Plasma Conversion of CO2 in DC Glow Discharge with Distributed Gas Injection and Pumping. East European Journal of Physics, (4), 152-159.