Numerical Simulation of the Dynamics of RF Capacitive Discharge in Carbon Dioxide

  • Valeriy Lisovskiy V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-6339-4516
  • Stanislav Dudin .N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-9161-4654
  • Amaliya Shakhnazarian V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Pavlo Platonov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Vladimir Yegorenkov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7252-3711
Keywords: Radio-frequency capacitive discharge, Fluid modeling, Carbon dioxide, Ionization rate, Double layers, Negative ions

Abstract

In this research, the one-dimensional fluid code SIGLO-rf was used to study the internal parameters of RF capacitive discharge in carbon dioxide, focusing mainly on time-averaged and spatio-temporal distributions of discharge parameters. With the help of this code, in the range of distances between electrodes d = 0.04 – 8 cm, RF frequencies f = 3.89 – 67.8 MHz, and values of carbon dioxide pressure p = 0.1 – 9.9 Torr, averaged over the RF period axial profiles of the density of electrons, positive and negative ions were calculated as well as potential and electric field strength. It is shown that the discharge plasma in CO2 contains electrons, positive ions, as well as negative ions. The negative ions of atomic oxygen are formed by the dissociative attachment of electrons to CO2 molecules. Studies of the spatio-temporal dynamics of plasma parameters (electron density, potential and electric field strength, as well as ionization and attachment rates) in RF capacitive discharge in CO2 showed that during half of the RF period, 1 to 3 ionization bursts are usually observed. They correspond to stochastic heating in the near-electrode sheath and the formation of passive and active double layers near the sheath boundaries. The passive double layer appears in the cathode phase and maintains the discharge plasma. The active layer is formed in the anodic phase and ensures a balance of positive and negative charges escaping to the electrode during the RF period. It was found that when the conditions pd = 2 Torr cm and fd = 27.12 MHz cm are met simultaneously, during half of the RF period, 4 intense ionization peaks are observed: resulting from stochastic heating, passive, active, and additional (auxiliary) double layers. The auxiliary double layer helps bring electrons to the surface of the temporary anode and occurs near its surface inside the near-electrode sheath. Using the similarity law, the conditions for the existence of these 4 ionization peaks in a wide range of RF frequencies, carbon dioxide pressures, and distances between electrodes were verified.

Downloads

Download data is not yet available.

References

A. Lieberman, and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, Hoboken, USA, 2005). https://doi.org/10.1002/0471724254

Yu.P. Raizer, M.N. Shneider, and N.A. Yatsenko, Radio-frequency Capacitive Discharges (CRC Press, Boca Raton, FL, 1995).

J. Reece Roth, Industrial Plasma Engineering. vol. 2: Applications to Nonthermal Plasma Processing (Bristol, IOP Publishing, 2001).

P. Chabert, and N. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, Cambridge, 2011).

M. Keidar, and I. Beilis, Plasma Engineering (Academic Press, London, 2018).

G. Colonna, and A. D'Angola, Plasma Modeling: Methods and applications (IOP Publishing, Bristol, 2022).

J.F. Friedrich, and J. Meichsner, Nonthermal Plasmas for Materials Processing: Polymer Surface Modification and Plasma Polymerization (Wiley-Scrivener, Hoboken, 2022).

L. Bardos, and H. Barankova, Microwave Plasma Sources and Methods in Processing Technology (Hoboken, Wiley-IEEE Press, 2022).

T. Shao, and Ch. Zhang, editors, Pulsed Discharge Plasmas: Characteristics and Applications (Springer, Singapore, 2023).

Ph. Belenguer, and J.P. Boeuf, Physical Review A, 41, 4447 (1990), https://doi.org/10.1103/PhysRevA.41.4447

V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, IEEE Transactions on Plasma Science, 19, 660 (1991). https://doi.org/10.1109/27.90309

V.A. Lisovskii, Technical Physics Letters, 24, 308 (1998). https://doi.org/10.1134/1.1262093

V. Lisovskiy, J.-P. Booth, S. Martins, K. Landry, D. Douai, and V. Cassagne, Europhysics Letters 71, 407 (2005). https://doi.org/10.1209/epl/i2005-10108-1

V. Lisovskiy, A. Minenkov, S. Dudin, S. Bogatyrenko, P. Platonov, and V. Yegorenkov, ACS Omega 7, 47941 (2022). https://doi.org/10.1021/acsomega.2c05846

S.Y. Moon, J.K. Rhee, D.B. Kim, and W. Choe, Physics of Plasmas, 13, 033502 (2006), https://doi.org/10.1063/1.2177590

V. Lisovskiy, J.-P. Booth, K. Landry, D. Douai, V. Cassagne, and V. Yegorenkov, J. Phys. D: Appl. Phys. 40, 6631 (2007). https://doi.org/10.1088/0022-3727/40/21/023

V. Lisovskiy, J.-P. Booth, J. Jolly, S. Martins, K. Landry, D. Douai, V. Cassagne, and V. Yegorenkov, J. Phys. D: Appl. Phys. 40, 6989 (2007), https://doi.org/10.1088/0022-3727/40/22/020

V. Lisovskiy, V. Yegorenkov, E. Artushenko, J.-P. Booth, S. Martins, K. Landry, D. Douai, and V. Cassagne, Plasma Sources Sci. Technol. 22, 015018 (2013). https://doi.org/10.1088/0963-0252/22/1/015018

V. Godyak, Phys. Plasmas, 27, 013504 (2020). https://doi.org/10.1063/1.5122957

M.A. Lieberman, IEEE Trans. Plasma Sci. 17, 338 (1989). https://doi.org/10.1109/27.24645

M.A. Lieberman, IEEE Trans. Plasma Sci. 16, 638 (1988). https://doi.org/10.1109/27.16552

A.J. Lichtenberg, V. Vahedi, M.A. Lieberman, and T. Rognlien, J. Appl. Phys. 75, 2339 (1994). https://doi.org/10.1063/1.356252

F. Hamaoka, T. Yagisawa, and T. Makabe, J. Phys: Conf. Series 86, 012018 (2007). https://doi.org/10.1088/1742-6596/86/1/012018

V.I. Kolobov, R.R. Arslanbekov, D. Levko, and V.A. Godyak, J. Phys. D: Appl. Phys. 53, 25LT01 (2020). https://doi.org/10.1088/1361-6463/ab7ca0

J.P. Verboncoeur, M. Alves, V. Vahedi, and C. Birdsall, Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes J. Comput. Phys. 104, 321 (1993). https://doi.org/10.1006/jcph.1993.1034

V. Vahedi, C.K. Birdsall, M.A. Lieberman, G. DiPeso, and T.D. Rognlien, Plasma Sources Sci. Technol. 2, 273 (1993). https://doi.org/10.1088/0963-0252/2/4/007

T. Lafleur, P. Chabert, and J.P. Booth, Plasma Sources Sci. Technol. 23, 035010 (2014). https://doi.org/10.1088/0963-0252/23/3/035010

E. Kawamura, M.A. Lieberman, A.J. Lichtenberg, and P. Chabert, J. Vac. Sci. Technol. A, 38, 023003 (2020). https://doi.org/10.1116/1.5135575

J.T. Gudmundsson, J. Krek, D.-Q. Wen, E. Kawamura, and M.A. Lieberman, Plasma Sources Sci. Technol. 30, 125011 (2021). https://doi.org/10.1088/1361-6595/ac3ba1

Z. Donkó, Plasma Sources Sci. Technol. 20, 024001 (2011). https://doi.org/10.1088/0963-0252/20/2/024001

J. Schulze, E. Schüngel, A. Derzsi, I. Korolov, Th. Mussenbrock, and Z. Donkó, IEEE Trans. Plasma Sci. 42, 2780 (2014). https://doi.org/10.1109/TPS.2014.2306265

M. Vass, S. Wilczek, T. Lafleur, R. P. Brinkmann, Z. Donko, and J. Schulze, Plasma Sources Sci. Technol. 29, 085014 (2020). https://doi.org/10.1088/1361-6595/aba111

D.A. Schulenberg, I. Korolov, Z. Donko, A. Derzsi, and J. Schulze, Plasma Sources Sci. Technol. 30, 105003 (2021). https://doi.org/10.1088/1361-6595/ac2222

D.-Q.Wen, J. Krek, J. T. Gudmundsson, E. Kawamura, M. A. Lieberman, P. Zhang, and J. P. Verboncoeur, Plasma Sources Sci. Technol. 32, 064001 (2023). https://doi.org/10.1088/1361-6595/acd6b4

A. Derzsi, B. Horváth, Z. Donkó, and J. Schulze, Plasma Sources Sci. Technol. 29, 074001 (2020). https://doi.org/10.1088/1361-6595/ab9156

S. Rauf, Plasma Sources Sci. Technol. 29, 095019 (2020). https://doi.org/10.1088/1361-6595/abac4a

L. Wang, P. Hartmann, Z. Donkó, Y.-H. Song, and J. Schulze, Plasma Sources Sci. Technol. 30, 085011 (2021). https://doi.org/10.1088/1361-6595/abf206

L. Wang, P. Hartmann, Z. Donkó, Y.-H. Song, and J. Schulze, J. Vac. Sci. Technol. A 39, 063004 (2021). https://doi.org/10.1116/6.0001327

S. Sharma, S. Patil, S. Sengupta, A. Sen, A. Khrabrov, and I. Kaganovich, Phys. Plasmas, 29, 063501 (2022). https://doi.org/10.1063/5.0094409

A. Picard, G. Turban, and B. Grolleau, J. Phys. D: Appl. Phys. 19, 991 (1986). https://doi.org/10.1088/0022-3727/19/6/014

N. Nakano, N. Shimura, Z. Lj. Petrovic, and T. Makabe, Phys. Rev. E, 49, 4455 (1994). https://doi.org/10.1103/PhysRevE.49.4455

Y.T. Lee, M.A. Lieberman, A.J. Lichtenberg, F. Bose, H. Baltes, and R. Patrick, J. Vac. Sci. Technol. A: Vacuum, Surfaces and Films, 15, 113 (1997). https://doi.org/https://doi.org/.1116/1.580452

M. Shibata, T. Makabe, and N. Nakano, Jpn. J. Appl. Phys. 37, 4182 (1998). https://doi.org/10.1143/JJAP.37.4182

V.A. Lisovskiy and V.D. Yegorenkov, Vacuum, 80, 458 (2006). https://doi.org/10.1016/j.vacuum.2005.07.038

J. Schulze, A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, and Z. Donkó, Phys. Rev. Lett. 107, 275001 (2011). https://doi.org/10.1103/PHYSREVLETT.107.275001

E. Kawamura, A.J. Lichtenberg, and M.A. Lieberman, J. Phys. D: Appl. Phys. 45, 495201 (2012). https://doi.org/10.1088/0022-3727/45/49/495201

V. Lisovskiy, and V. Yegorenkov, EPL, 99, 35002 (2012). https://doi.org/10.1209/0295-5075/99/35002

A. Proto, and J.T. Gudmundsson, J. Appl. Phys. 128, 113302 (2020). https://doi.org/10.1063/5.0019340

A. Proto, and J.T. Gudmundsson, Plasma Sources Sci. Technol. 30, 065009 (2021). https://doi.org/10.1088/1361-6595/abef1d

A. Derzsi, P. Hartmann, M. Vass, B. Horváth, M. Gyulai, I. Korolov, J. Schulze, and Z. Donko, Plasma Sources Sci. Technol. 31, 085009 (2022). https://doi.org/10.1088/1361-6595/ac7b45

C. Harvey, N. Sirse, C. Gaman, and A. R. Ellingboe, Phys. Plasmas, 27, 110701 (2020). https://doi.org/10.1063/5.0022844

A. Derzsi, M. Vass, R. Masheyeva, B. Horváth, Z. Donkó, and P. Hartmann, Plasma Sources Sci. Technol. 33, 025005 (2024). https://doi.org/10.1088/1361-6595/ad1fd5

R. Masheyeva, M. Vass, X.-K. Wang, Y.-X. Liu, A. Derzsi, P. Hartmann, J. Schulze, and Z. Donkó, Plasma Sources Sci. Technol. 33, 045019 (2024). https://doi.org/10.1088/1361-6595/ad3c69

R.A. Gottscho, Phys. Rev. A 36, 2233 (1987). https://doi.org/10.1103/PhysRevA.36.2233

R.A. Gottscho, and C.E. Gaebe, IEEE Trans. Plasma Sci. PS-14, 92 (1986). https://doi.org/10.1109/TPS.1986.4316511

J.-P. Boeuf, Phys. Rev. A, 36, 2782 (1987). https://doi.org/10.1103/PhysRevA.36.2782

J. P. Boeuf, and P. Belenguer, in Nonequilibrium Processes in Partially Ionized Gases, edited by M. Capitelli and J. N. Bardsley (Springer, New York, 1990). pp. 155–186. https://doi.org/10.1007/978-1-4615-3780-9_9

J.P. Boeuf, and L.C. Pitchford, Phys. Rev. E, 51, 1376 (1995). https://doi.org/10.1103/PhysRevE.51.1376

P. Vitruk, H. Baker, and D. Hall, IEEE J. Quantum Electronics, 30, 1623 (1994). https://doi.org/10.1109/3.299494

G.A.J. Markille, J.J. Baker, J.G. Betterton, and D.R. Hall, IEEE J. Quantum Electronics, 35, 1134 (1999). https://doi.org/10.1109/3.777212

R. Engelbrecht, R. Schulz, G. Seibert, J. Hagen, and L.-P. Schmidt, Frequenz, 59, 154 (2005). https://doi.org/10.1515/freq.2005.59.5-6.154

O. Svelto, Principles of lasers, (Springer, New York, 2009). 604 p.

A. Bogaerts, T. Kozak, K. van Laer, and R. Snoeckx, Faraday Discuss. 183, 217 (2015). https://doi.org/10.1039/C5FD00053J

T. Kozak, and A. Bogaerts, Plasma Sources Sci. Technol. 24, 015024 (2014). https://doi.org/10.1088/0963-0252/24/1/015024

R. Snoeckx, and A. Bogaerts, Chem. Soc. Rev. 46, 5805 (2017). https://doi.org/10.1039/C6CS00066E

A. Bogaerts, and G. Centi, Frontiers in Energy Research, 8, 111 (2020). https://doi.org/10.3389/fenrg.2020.00111

G. Chen, R. Snyders, and N. Britun, J. CO2 Utilization, 49, 101557 (2021). https://doi.org/10.1016/j.jcou.2021.101557

S. Dudin, V. Lisovskiy, P. Platonov, and S. Rezunenko, Problems of Atomic Science and Technology, 6(142), 84 (2022). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2022_6/article_2022_6_84.pdf

V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov, East European J. Phys. (4), 152 (2021). https://doi.org/10.26565/2312-4334-2021-4-20

V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov, Problems of atomic science and technology, 6(130), 179 (2020). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2020_6/article_2020_6_179.pdf

A.S. Morillo-Candas, V. Guerra, and O. Guaitella, J. Phys. Chem. C, 124, 17459 (2020). https://doi.org/10.1021/acs.jpcc.0c03354

R. Vertongen, G. Trenchev, R. Van Loenhout, and A. Bogaerts, J. CO2 Utilization, 66, 102252 (2022). https://doi.org/10.1016/j.jcou.2022.102252

Q. Fu, Y. Wang, and Zh. Chang, J. CO2 Utilization, 70, 102430 (2023). https://doi.org/10.1016/j.jcou.2023.102430

E.R. Mercer, S. Van Alphen, C.F.A.M. van Deursen, T.W.H. Righart, W.A. Bongers, R. Snyders, A. Bogaerts, et al., Fuel, 334, 126734 (2023). https://doi.org/10.1016/j.fuel.2022.126734

S. Kelly, E. Mercer, Y. Gorbanev, I. Fedirchyk, C. Verheyen, K. Werner, P. Pullumbi, A. Cowley, and A. Bogaerts. J. CO2 Utilization, 80, 102668 (2024). https://doi.org/10.1016/j.jcou.2024.102668

Y. Long, X. Wang, H. Zhang, K. Wang, W.-L. Ong, A. Bogaerts, K. Li, et al., JACS Au, 4, 7 2462 (2024). https://doi.org/10.1021/jacsau.4c00153

G.J.M. Hagelaar and L.C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005). https://doi.org/10.1088/0963-0252/14/4/011

L.C. Pitchford, L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage et al., Plasma Process. Polym. 14, 1600098 (2017). https://doi.org/10.1002/ppap.201600098

Y. Itikawa, J. Phys. Chem. Reference Data, 31, 749 (2002). https://doi.org/10.1063/1.1481879

V.A. Lisovskiy, S.V. Dudin, P.P. Platonov, and V.D. Yegorenkov, Physica Scripta, 98, 025601 (2023). https://doi.org/10.1088/1402-4896/acae48

H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, and L.A. Viehland, Atomic Data and Nuclear Data Tables, 17, 177 (1976). https://doi.org/10.1016/0092-640X(76)90001-2

P. Coxon, and J. Moruzzi, J. Phys. Colloques, 40, 117 (1979). https://doi.org/10.1051/jphyscol:1979758

E.W. McDaniel, and H. Crane, Rev. Sci. Instruments, 28, 684 (1957). https://doi.org/10.1063/1.1715976

W.L. Nighan, and W.J. Wiegand, Phys. Rev. A, 10, 922 (1974). https://doi.org/10.1103/PhysRevA.10.922

C.S. Weller, and M.A. Biondi, Phys. Rev. Lett. 19, 59 (1967). https://doi.org/10.1103/PhysRevLett.19.59

Yu.P. Raizer, Gas discharge physics, (Springer, Berlin, 1991).

T.D. Fansler, L.M. ColonnaRomano, and R.N. Varney, J. Chem. Phys. 66, 3246 (1977). https://doi.org/10.1063/1.434300

V. Lisovskiy, S. Dudin, A. Shakhnazarian, P. Platonov, and V. Yegorenkov, Problems of Atomic Science and Technology, 4(129), (2023). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2023_4/article_2023_4_129.pdf

V.A. Lisovskiy, S.V. Dudin, M.M. Vusyk, R.O. Osmayev, V.D. Yegorenkov, and P.P. Platonov, Problems of Atomic Science and Technology, 186, (2023). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2023_1/article_2023_1_86.pdf

P. Capezzuto, F. Cramarossa, R. D’Agostino, and E. Molinari, J. Phys. Chem. 80, 882 (1976). https://doi.org/10.1021/j100549a024

V. Lisovskiy, J.P. Booth, K. Landry, D. Douai, V. Cassagne, and V. Yegorenkov, Europhys. Lett. 82, 15001 (2008). https://doi.org/10.1209/0295-5075/82/15001

Y. Fu, H. Wang, and X. Wang, Rev. Modern Plasma Phys. 7, 10 (2023). https://doi.org/10.1007/s41614-022-00112-1

Y. Fu, B. Zheng, P. Zhang, Q.H. Fan, J.P. Verboncoeur, and X. Wang, Phys. Plasmas, 27, 113501 (2020). https://doi.org/10.1063/5.0022788

[Y. Fu, B. Zheng, D.-Q. Wen, P. Zhang, Q.H. Fan, and J.P. Verboncoeur, Appl. Phys. Lett. 117, 204101 (2020). https://doi.org/10.1063/5.0029518

Published
2024-09-02
Cited
How to Cite
Lisovskiy, V., Dudin, S., Shakhnazarian, A., Platonov, P., & Yegorenkov, V. (2024). Numerical Simulation of the Dynamics of RF Capacitive Discharge in Carbon Dioxide. East European Journal of Physics, (3), 172-187. https://doi.org/10.26565/2312-4334-2024-3-17