The Mechanism of Current Transfer in n-GaAs – p(ZnSe)1-x-y(Ge2)x(GaAs1–δBiδ)y Heterostructures

  • Sirajidin S. Zainabidinov Andijan state university named after Z.M. Babur, Andijan, Uzbekistan https://orcid.org/0000-0003-2943-5844
  • Khotamjon J. Mansurov Andijan state university named after Z.M. Babur, Andijan, Uzbekistan https://orcid.org/0009-0006-4571-7795
  • Akramjon Y. Boboev Andijan state university named after Z.M. Babur, Andijan, Uzbekistan; Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-3963-708X
  • Jakhongir N. Usmonov Andijan state university named after Z.M. Babur, Andijan, Uzbekistan https://orcid.org/0000-0002-7243-4938
Keywords: Heterostructure, Substrate, Liquid phase epitaxy, Film, Solid solution, Compound, I-V characteristics, Drift mechanism, Charge transport, Temperature

Abstract

The I-V characteristics of heterostructures n-GaAs – p-(ZnSe)1–x–y(Ge2)x(GaAs1–δBiδ) exhibit a characteristic quadratic law - J~V2 I-V curve, followed by a sharp pre-breakdown current growth, which well explains the observed straight branch of the I-V characteristics and this regularity remains unchanged at different temperatures. The analysis of the I-V characteristics of n‑GaAs‑p‑(ZnSe)1‑x‑y(Ge2)x(GaAs1–δBiδ) heterostructures with an extended intermediate solid solution layer shows that the drift mechanism of charge transport predominates under forward bias conditions.

Downloads

Download data is not yet available.

References

V.P. Makhni, M.M. Sletov, and I.V. Tkachenko, “The nature of the green luminescence band in zinc selenide crystals,” Journal of Optical Technology, 74(6), 394-396 (2007). https://doi.org/10.1364/JOT.74.000394

V.P. Makhni, M.M. Sletov, and S.V. Khusnutdinov, “Preparation of ZnO Heterolayers on Zinc Chalcogenide Substrates,” Inorganic Materials, 43(12) 1304–1306 (2007). https://doi.org/10.1134/S0020168507120096

V.P. Makhniy, M.M. Slyotov, and S.V. Khusnutdinov, “Luminescence of zinc oxide layers synthesized on zinc selenide substrates by the isovalent substitution method,” Russian Physics Journal, 52(2), 216-217 (2009).

A. Gangopadhyay, “Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures,” PhD Thesis, Arizona State University, May 2021, pp.136.

L.G. Wang, and A.Z. Dilute, “Dilute nonisovalent (II-VI)-(III-V) semiconductor alloys: Monodoping, codoping, and cluster doping in ZnSe-GaAs,” Physical Review B, 68, 125211 (2003). https://doi.org/10.1103/PhysRevB.68.125211

A.Y. Boboev, “Structural features, electrophysical and photoelectric properties of n- (GaAs)-p-GaAs)1-x-y(Ge2)x(ZnSe)у heterostructures,” PhD Thesis, Tashkent, IFPM, 2019, 128 p.

S. Zainabidinov, Sh. Utamuradova, and A. Boboev. “Structural Peculiarities of the (ZnSe)1–x–y(Ge2)x(GaAs1–δBiδ)y Solid Solution with Various Nanoinclusions,” Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques, 16(6),1130-1134 (2022). https://doi.org/10.1134/S1027451022060593

S. Zaynabidinov, A. Saidov, A. Boboev, and D. Abdurahimov, “Structure, Morphology and Photoelectric Properties of n-GaAs-p-(GaAs)1--x(Ge2)х Heterostructure,” Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 100(1), 72-87 (2022). https://doi.org/10.18698/1812-3368-2022-1-72-87

O.O. Mamatkarimov, O. Himmatkulov, and I.G. Tursunov, “Effect of Uniaxial Elastic Deformation on the Current–Voltage Characteristic of Surface-Barrier Sb–p-Si〈Mn〉–Au Diodes,” Semiconductors, 54(5), 563–566 (2020). https://doi.org/10.1134/S1063782620050085

A.S. Saidov, A.Yu. Leiderman, Sh.N. Usmonova, and U.P. Asatova, “Peculiarities of the Current–Voltage Characteristic of n-GaP–p-(InSb)1–x(Sn2)x Heterostructures,” Technical Physics Letters, 46(11), 1124–1127 (2020). https://doi.org/10.1134/S1063785020110279

A.Yu. Leiderman, and M.K. Minbaev, “A mechanism of rapid growth of direct in semiconductor diode structures,” FTP, 30(10), 1729-1738 (1996). (in Russian)

Sh.A. Mirsagatov, A.Yu. Leiderman, and O.K. Ataboev. “Mechanism of Charge Transfer in Injection Photodiodes Based on the In–n+CdS–nCdSxTe1–x–pZnxCd1–xTe–Mo Structure,” Physics of the Solid State, 55(8), 1635–1646 (2013). https://doi.org/10.1134/S1063783413080192

A.Yu. Leiderman, and P.M. Karageorgy-Alkalaev, “On the theory of sublinear current-voltage characteristics of semiconductor structures,” Solid State Communications, 25(10), 781-783 (1978). https://doi.org/10.1016/0038-1098(78)90239-9

P.M. Karageorgy-Alkalaev, and A.Yu. Leiderman, “Statistics of Inter-Impurity Recombination of Electrons and Holes in Semiconductors,” Physica status solidi (b). 26(2), 419-428 (1968). https://doi.org/10.1002/pssb.19680260204

A.Yu. Leiderman, “Possible Influence of Nonequilibrium Carrier Recombination Rate Saturation on Photocell Operation,” Applied Solar Energy, 44(2), 79–81 (2008). https://doi.org/10.3103/S0003701X08020035

Published
2024-09-02
Cited
How to Cite
Zainabidinov, S. S., Mansurov, K. J., Boboev, A. Y., & Usmonov, J. N. (2024). The Mechanism of Current Transfer in n-GaAs – p(ZnSe)1-x-y(Ge2)x(GaAs1–δBiδ)y Heterostructures. East European Journal of Physics, (3), 287-292. https://doi.org/10.26565/2312-4334-2024-3-29