Interactions of Novel Phosphonium Dye with Lipid Bilayers: A Fluorescence Study
Abstract
The phosphonium-based optical probes attract ever growing interest due to their excellent chemical and photophysical stability, high aqueous solubility, long wavelength absorption and emission, large extinction coefficient, high fluorescence quantum yield, low cytotoxicity, etc. The present study was focused on assessing the ability of the novel phosphonium dye TDV to monitor the changes in physicochemical properties of the model lipid membranes. To this end, the fluorescence spectral properties of TDV have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) or/and anionic phospholipid cardiolipin (CL). It was observed that in the buffer solution TDV possesses one well-defined fluorescence peak with the emission maximum at 533 nm. The dye transfer from the aqueous to lipid phase was followed by the enhancement of the fluorescence intensity coupled with a red shift of the emission maximum up to 67 nm, depending on the liposome composition. The quantitative information about the dye partitioning into lipid phase of the model membranes was obtained through approximating the experimental dependencies of the fluorescence intensity increase vs lipid concentration by the partition model. Analysis of the partition coefficients showed that TDV has a rather high lipid-associating ability and displays sensitivity to the changes in physicochemical properties of the model lipid membranes. The addition of CL, Chol or both lipids to the PC bilayer gives rise to the increase of the TDV partition coefficients compared to the neat PC membranes. The enhancement of the phosphonium dye partitioning in the CL and Chol-containing lipid bilayers has been attributed to the cardiolopin- and cholesterol-induced changes in the structure and physicochemical characteristics of the polar membrane region.
Downloads
References
I. Crnolatac, L.-M. Tumir, N. Lesev, A. Vasilev, T. Deligeorgiev, K. Mišković, L. Glavaš-Obrovac, O. Vugrek, and I. Piantanida, ChemMedChem. 8, 1093 (2013), https://doi.org/10.1002/cmdc.201300085
L.-M. Tumir, I. Crnolatac, T. Deligeorgiev, A. Vasilev, S. Kaloyanova, M. Grabar Branilovic, S. Tomic, and I. Piantanida, Chem. Eur. J. 18, 3859 (2012), https://doi.org/10.1002/chem.201102968.
G. Li, K. Yang, J. Sun, and Y. Wang, RSC Adv. 6, 94085 (2016), https://doi.org/10.1039/C6RA21848B.
W. Chen, D. Zang, W. Gong, Y. Lin, and G. Ning, Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 471 (2013), https://doi.org/10.1016/j.saa.2013.03.088.
A. Šarić, I. Crnolatac, F. Bouillaud, S. Sobočanec, A.-M. Mikecin, Ž. Mačak Šafranko, T. Delgeorgiev, I. Piantanida, T. Balog, and P. X Petit, Methods Apl. Fluoresc. 5, 015007 (2017), https://doi.org/10.1088/2050-6120/aa5e64
R.A. J. Smith, C. M. Porteous, C.V. Coulter, and M.P. Murphy, Eur. J. Biochem. 263, 709 (1999), https://doi.org/10.1046/j.1432-1327.1999.00543.x.
G.F. Kelso, C. M. Porteous, C.V. Coulter, G. Hughes, W.K. Porteous, E.C. Ledgerwood, R.A.J. Smith, and M.P. Murphy, J. Biol. Chem. 276, 4588 (2001), https://doi.org/10.1074/jbc.M009093200
K. Li, S. Chen, Z. Liu, Z. Zhao, and J. Lu, J. Organomet. Chem. 871, 28 (2018), https://doi.org/10.1016/j.jorganchem.2018.07.003
A. Lizzul-Jurse, L. Bailly, M. Hubert-Roux, C. Afonso, P. Rehard, and C. Sabot, Org. biomol. Chem. 14, 7777 (2016), https://doi.org/10.1039/C6OB01080F
X. H. Wang, H. S. Peng, L. Yang, F.T. You, F. Teng, L.L. Hou, and O.S. Wolbeis, Angew. Chemie. 53, 12471 (2014), https://doi.org/10.1002/ange.201405048
B.C. Dickinson, and C.J. Chang, J. Am. Chem. Soc. 130, 9638 (2008), https://doi.org/10.1021/ja802355u
G. Gorbenko, V. Trusova, T. Deligeorgiev, N. Gadjev, C. Mizuguchi, and H. Saito, J. Mol. Liq. 294, 111675 (2019), https://doi.org/10.1016/j.molliq.2019.111675
G. Gorbenko, O. Zhytniakivska, K.Vus, U. Tarabara, and V. Trusova, Phys. Chem. Chem. Phys. 23, 14746 (2021), https://doi.org/10.1039/D1CP01359A
O. Zhytniakivska, U. Tarabara, K.Vus, V. Trusova and G. Gorbenko, East. Eur. J. Phys. 2, 19 (2019), https://doi.org/10.26565/2312-4334-2019-2-03
B. Mui, L. Chow, and M. Hope, Meth. Enzymol. 367, 3 (2003), https://doi.org/10.1016/S0076-6879(03)67001-1
N. Santos, M. Prieto, and M. Castanho, Biochim. Biophys. Acta 1612, 123 (2003), https://doi.org/10.1016/S0005-2736(03)00112-3
F. Lombardo, M. Shalaeva, K. Tupper, F. Gao, and M. Abraham, J. Med. Chem. 43, 2922 (2000), https://doi.org/10.1021/jm0000822
G. van Balen, C. Martinet, G. Caron, G. Bouchard, M. Reist, P. Carrupt, R. Fruttero, A. Gasco, and B. Testa, Med. Res. Rev. 3, 299 (2004), https://doi.org/10.1002/med.10063
C. Giaginis, and A. Tsantili-Kakoulidou, J. Pharmaceut. Sci. 97, 2984 (2008), https://doi.org/10.1002/jps.21244
G. Cevc, Biochim. Biophys. Acta 1031, 311 (1990), https://doi.org/10.1016/0304-4157(90)90015-5
J. Tocanne, and J. Teissie, Biochim. Biophys. Acta 1031, 111 (1990), https://doi.org/10.1016/0304-4157(90)90005-W
R. Flewelling, and W. Hubbel, Biophys. J. 49, 541 (1986), https://doi.org/10.1016/S0006-3495(86)83664-5
M. Belaya, M.V. Feigel’man, and V.G. Levadnyii, Langmuir 3, 648 (1987), https://doi.org/10.1021/la00077a011
A. Shibata, K. Ikawa, T. Shimmoka, and H. Terada, Biochim. Biophys. Acta 1192, 71 (1994), https://doi.org/10.1016/0005-2736(94)90144-9
M. Dahlberg, and F. Maliniak J Phys Chem B 112, 11655 (2008), https://doi.org/10.1021/jp803414g
W.-C. Hung, M.-T. Lee, F.-Y. Chen, and H.W. Huang, Biophys. J. 92, 3960 (2007), https://doi.org/10.1529/biophysj.106.099234
Y. Levine, Prog. Biophys. Mol. Biol. 24, 1 (1972), https://doi.org/10.1016/0079-6107(72)90003-X
H.A. Perez, A. Disalvo, and M. de los Angeles Frias, Colloid Surf. B. 178, 346 (2019), https://doi.org/10.1016/j.colsurfb.2019.03.022
H.A. Perez, L.M. Alarcon, A.R. Verde, G.A. Appignanesi, R.E. Gimenez, E.A. Disalvo, and M.A. Frias, Biochim. Biophys. Acta 1863, 183489 (2021), https://doi.org/10.1016/j.bbamem.2020.183489
T. Parasassi, M. Stefano, M. Loiero, G. Ravagnan, and E. Gratton, Biophys J. 66, 120 (1994), https://doi.org/10.1016/S0006-3495(94)80763-5
O.P. Bondar, and E.S. Rowe, Biophys J. 76, 956 (1999), https://doi.org/10.1016/S0006-3495(99)77259-0
S. Bandari, H. Chakraborty, D. Covey, and A. Chattopadhyay, Chem. Phys. Lipids 184, 25 (2014), https://doi.org/10.1016/j.chemphyslip.2014.09.001
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).