Interactions of Novel Phosphonium Dye with Lipid Bilayers: A Fluorescence Study

  • Olga Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-2068-5823
Keywords: phosphonium probe, lipid membranes, fluorescence, partitioning

Abstract

The phosphonium-based optical probes attract ever growing interest due to their excellent chemical and photophysical stability, high aqueous solubility, long wavelength absorption and emission, large extinction coefficient, high fluorescence quantum yield, low cytotoxicity, etc. The present study was focused on assessing the ability of the novel phosphonium dye TDV to monitor the changes in physicochemical properties of the model lipid membranes. To this end, the fluorescence spectral properties of TDV have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) or/and anionic phospholipid cardiolipin (CL). It was observed that in the buffer solution TDV possesses one well-defined fluorescence peak with the emission maximum at 533 nm. The dye transfer from the aqueous to lipid phase was followed by the enhancement of the fluorescence intensity coupled with a red shift of the emission maximum up to 67 nm, depending on the liposome composition. The quantitative information about the dye partitioning into lipid phase of the model membranes was obtained through approximating the experimental dependencies of the fluorescence intensity increase vs lipid concentration by the partition model. Analysis of the partition coefficients showed that TDV has a rather high lipid-associating ability and displays sensitivity to the changes in physicochemical properties of the model lipid membranes. The addition of CL, Chol or both lipids to the PC bilayer gives rise to the increase of the TDV partition coefficients compared to the neat PC membranes. The enhancement of the phosphonium dye partitioning in the CL and Chol-containing lipid bilayers has been attributed to the cardiolopin- and cholesterol-induced changes in the structure and physicochemical characteristics of the polar membrane region.

Downloads

Download data is not yet available.

References

I. Crnolatac, L.-M. Tumir, N. Lesev, A. Vasilev, T. Deligeorgiev, K. Mišković, L. Glavaš-Obrovac, O. Vugrek, and I. Piantanida, ChemMedChem. 8, 1093 (2013), https://doi.org/10.1002/cmdc.201300085

L.-M. Tumir, I. Crnolatac, T. Deligeorgiev, A. Vasilev, S. Kaloyanova, M. Grabar Branilovic, S. Tomic, and I. Piantanida, Chem. Eur. J. 18, 3859 (2012), https://doi.org/10.1002/chem.201102968.

G. Li, K. Yang, J. Sun, and Y. Wang, RSC Adv. 6, 94085 (2016), https://doi.org/10.1039/C6RA21848B.

W. Chen, D. Zang, W. Gong, Y. Lin, and G. Ning, Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 471 (2013), https://doi.org/10.1016/j.saa.2013.03.088.

A. Šarić, I. Crnolatac, F. Bouillaud, S. Sobočanec, A.-M. Mikecin, Ž. Mačak Šafranko, T. Delgeorgiev, I. Piantanida, T. Balog, and P. X Petit, Methods Apl. Fluoresc. 5, 015007 (2017), https://doi.org/10.1088/2050-6120/aa5e64

R.A. J. Smith, C. M. Porteous, C.V. Coulter, and M.P. Murphy, Eur. J. Biochem. 263, 709 (1999), https://doi.org/10.1046/j.1432-1327.1999.00543.x.

G.F. Kelso, C. M. Porteous, C.V. Coulter, G. Hughes, W.K. Porteous, E.C. Ledgerwood, R.A.J. Smith, and M.P. Murphy, J. Biol. Chem. 276, 4588 (2001), https://doi.org/10.1074/jbc.M009093200

K. Li, S. Chen, Z. Liu, Z. Zhao, and J. Lu, J. Organomet. Chem. 871, 28 (2018), https://doi.org/10.1016/j.jorganchem.2018.07.003

A. Lizzul-Jurse, L. Bailly, M. Hubert-Roux, C. Afonso, P. Rehard, and C. Sabot, Org. biomol. Chem. 14, 7777 (2016), https://doi.org/10.1039/C6OB01080F

X. H. Wang, H. S. Peng, L. Yang, F.T. You, F. Teng, L.L. Hou, and O.S. Wolbeis, Angew. Chemie. 53, 12471 (2014), https://doi.org/10.1002/ange.201405048

B.C. Dickinson, and C.J. Chang, J. Am. Chem. Soc. 130, 9638 (2008), https://doi.org/10.1021/ja802355u

G. Gorbenko, V. Trusova, T. Deligeorgiev, N. Gadjev, C. Mizuguchi, and H. Saito, J. Mol. Liq. 294, 111675 (2019), https://doi.org/10.1016/j.molliq.2019.111675

G. Gorbenko, O. Zhytniakivska, K.Vus, U. Tarabara, and V. Trusova, Phys. Chem. Chem. Phys. 23, 14746 (2021), https://doi.org/10.1039/D1CP01359A

O. Zhytniakivska, U. Tarabara, K.Vus, V. Trusova and G. Gorbenko, East. Eur. J. Phys. 2, 19 (2019), https://doi.org/10.26565/2312-4334-2019-2-03

B. Mui, L. Chow, and M. Hope, Meth. Enzymol. 367, 3 (2003), https://doi.org/10.1016/S0076-6879(03)67001-1

N. Santos, M. Prieto, and M. Castanho, Biochim. Biophys. Acta 1612, 123 (2003), https://doi.org/10.1016/S0005-2736(03)00112-3

F. Lombardo, M. Shalaeva, K. Tupper, F. Gao, and M. Abraham, J. Med. Chem. 43, 2922 (2000), https://doi.org/10.1021/jm0000822

G. van Balen, C. Martinet, G. Caron, G. Bouchard, M. Reist, P. Carrupt, R. Fruttero, A. Gasco, and B. Testa, Med. Res. Rev. 3, 299 (2004), https://doi.org/10.1002/med.10063

C. Giaginis, and A. Tsantili-Kakoulidou, J. Pharmaceut. Sci. 97, 2984 (2008), https://doi.org/10.1002/jps.21244

G. Cevc, Biochim. Biophys. Acta 1031, 311 (1990), https://doi.org/10.1016/0304-4157(90)90015-5

J. Tocanne, and J. Teissie, Biochim. Biophys. Acta 1031, 111 (1990), https://doi.org/10.1016/0304-4157(90)90005-W

R. Flewelling, and W. Hubbel, Biophys. J. 49, 541 (1986), https://doi.org/10.1016/S0006-3495(86)83664-5

M. Belaya, M.V. Feigel’man, and V.G. Levadnyii, Langmuir 3, 648 (1987), https://doi.org/10.1021/la00077a011

A. Shibata, K. Ikawa, T. Shimmoka, and H. Terada, Biochim. Biophys. Acta 1192, 71 (1994), https://doi.org/10.1016/0005-2736(94)90144-9

M. Dahlberg, and F. Maliniak J Phys Chem B 112, 11655 (2008), https://doi.org/10.1021/jp803414g

W.-C. Hung, M.-T. Lee, F.-Y. Chen, and H.W. Huang, Biophys. J. 92, 3960 (2007), https://doi.org/10.1529/biophysj.106.099234

Y. Levine, Prog. Biophys. Mol. Biol. 24, 1 (1972), https://doi.org/10.1016/0079-6107(72)90003-X

H.A. Perez, A. Disalvo, and M. de los Angeles Frias, Colloid Surf. B. 178, 346 (2019), https://doi.org/10.1016/j.colsurfb.2019.03.022

H.A. Perez, L.M. Alarcon, A.R. Verde, G.A. Appignanesi, R.E. Gimenez, E.A. Disalvo, and M.A. Frias, Biochim. Biophys. Acta 1863, 183489 (2021), https://doi.org/10.1016/j.bbamem.2020.183489

T. Parasassi, M. Stefano, M. Loiero, G. Ravagnan, and E. Gratton, Biophys J. 66, 120 (1994), https://doi.org/10.1016/S0006-3495(94)80763-5

O.P. Bondar, and E.S. Rowe, Biophys J. 76, 956 (1999), https://doi.org/10.1016/S0006-3495(99)77259-0

S. Bandari, H. Chakraborty, D. Covey, and A. Chattopadhyay, Chem. Phys. Lipids 184, 25 (2014), https://doi.org/10.1016/j.chemphyslip.2014.09.001

Published
2021-12-10
Cited
How to Cite
Zhytniakivska, O. (2021). Interactions of Novel Phosphonium Dye with Lipid Bilayers: A Fluorescence Study. East European Journal of Physics, (4), 107-113. https://doi.org/10.26565/2312-4334-2021-4-12

Most read articles by the same author(s)