Взамодія нового фосфонієвого зоду з ліпідними мембранами: флуоресцентне дослідження
Анотація
Останнім часом оптичні зонди на основі фосфонію привертають все більший інтерес завдяки їх чудовій хімічній та фотофізичній стабільності, високій розчинності у воді, поглинанню та випромінюванню в довгохвильовій області, великих коефіцієнтах екстинкції, високому квантовому виходу флуоресценції, низькій цитотоксичності, тощо. Дана робота була спрямована на оцінку чутливості нового фосфонієвого барвника TDV до змін фізико-хімічних властивостей модельних ліпідних мембран. З цією метою, було досліджено флуоресцентні спектральні властивості TDV в ліпідних бішарах, що складались із цвіттеріонного ліпіду фосфатидилхоліну (ФХ) та його сумішей з холестерином (Хол) та/або аніонним фосфоліпідом кардіоліпіном (КЛ). Виявилось, що в буферному розчині TDV має один добре виражений пік еміссії з на довжині хвилі 533 нм. Перехід барвника з водної в ліпідну фазу супроводжувався зростанням інтенсивності флуоресценції зонду, поряд із червоним зсувом максимуму випромінювання, величина якого досягала 67 нм, залежно від складу ліпосом. Була отримана кількісна інформація щодо розподілу барвника в ліпідну фазу модельних мембран шляхом апроксимації експериментальних залежностей зміни інтенсивності флуоресценції зонду від концентрації ліпіду моделлю розподілу. Аналіз отриманих коефіцієнтів розподілу демонструє високу ліпід-асоціюючу здатність TDV та його чутливість до змін фізико-хімічних властивостей модельних ліпідних мембран. Включення КЛ, Хол або обох ліпідів до ФХ бішару спричиняло збільшення коефіцієнтів розподілу TDV, порівняно з чистими ФХ мембранами. Зростання коефіцієнтів розподілу фосфонієвого барвника в ліпідних мембранах, що містили КЛ та Хол, було інтерпретовано в рамках уявлень про зміни структури та фізико-хімічних характеристик полярної області мембрани під впливом кардіоліпіну та холестерину.
Завантаження
Посилання
I. Crnolatac, L.-M. Tumir, N. Lesev, A. Vasilev, T. Deligeorgiev, K. Mišković, L. Glavaš-Obrovac, O. Vugrek, and I. Piantanida, ChemMedChem. 8, 1093 (2013), https://doi.org/10.1002/cmdc.201300085
L.-M. Tumir, I. Crnolatac, T. Deligeorgiev, A. Vasilev, S. Kaloyanova, M. Grabar Branilovic, S. Tomic, and I. Piantanida, Chem. Eur. J. 18, 3859 (2012), https://doi.org/10.1002/chem.201102968.
G. Li, K. Yang, J. Sun, and Y. Wang, RSC Adv. 6, 94085 (2016), https://doi.org/10.1039/C6RA21848B.
W. Chen, D. Zang, W. Gong, Y. Lin, and G. Ning, Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 471 (2013), https://doi.org/10.1016/j.saa.2013.03.088.
A. Šarić, I. Crnolatac, F. Bouillaud, S. Sobočanec, A.-M. Mikecin, Ž. Mačak Šafranko, T. Delgeorgiev, I. Piantanida, T. Balog, and P. X Petit, Methods Apl. Fluoresc. 5, 015007 (2017), https://doi.org/10.1088/2050-6120/aa5e64
R.A. J. Smith, C. M. Porteous, C.V. Coulter, and M.P. Murphy, Eur. J. Biochem. 263, 709 (1999), https://doi.org/10.1046/j.1432-1327.1999.00543.x.
G.F. Kelso, C. M. Porteous, C.V. Coulter, G. Hughes, W.K. Porteous, E.C. Ledgerwood, R.A.J. Smith, and M.P. Murphy, J. Biol. Chem. 276, 4588 (2001), https://doi.org/10.1074/jbc.M009093200
K. Li, S. Chen, Z. Liu, Z. Zhao, and J. Lu, J. Organomet. Chem. 871, 28 (2018), https://doi.org/10.1016/j.jorganchem.2018.07.003
A. Lizzul-Jurse, L. Bailly, M. Hubert-Roux, C. Afonso, P. Rehard, and C. Sabot, Org. biomol. Chem. 14, 7777 (2016), https://doi.org/10.1039/C6OB01080F
X. H. Wang, H. S. Peng, L. Yang, F.T. You, F. Teng, L.L. Hou, and O.S. Wolbeis, Angew. Chemie. 53, 12471 (2014), https://doi.org/10.1002/ange.201405048
B.C. Dickinson, and C.J. Chang, J. Am. Chem. Soc. 130, 9638 (2008), https://doi.org/10.1021/ja802355u
G. Gorbenko, V. Trusova, T. Deligeorgiev, N. Gadjev, C. Mizuguchi, and H. Saito, J. Mol. Liq. 294, 111675 (2019), https://doi.org/10.1016/j.molliq.2019.111675
G. Gorbenko, O. Zhytniakivska, K.Vus, U. Tarabara, and V. Trusova, Phys. Chem. Chem. Phys. 23, 14746 (2021), https://doi.org/10.1039/D1CP01359A
O. Zhytniakivska, U. Tarabara, K.Vus, V. Trusova and G. Gorbenko, East. Eur. J. Phys. 2, 19 (2019), https://doi.org/10.26565/2312-4334-2019-2-03
B. Mui, L. Chow, and M. Hope, Meth. Enzymol. 367, 3 (2003), https://doi.org/10.1016/S0076-6879(03)67001-1
N. Santos, M. Prieto, and M. Castanho, Biochim. Biophys. Acta 1612, 123 (2003), https://doi.org/10.1016/S0005-2736(03)00112-3
F. Lombardo, M. Shalaeva, K. Tupper, F. Gao, and M. Abraham, J. Med. Chem. 43, 2922 (2000), https://doi.org/10.1021/jm0000822
G. van Balen, C. Martinet, G. Caron, G. Bouchard, M. Reist, P. Carrupt, R. Fruttero, A. Gasco, and B. Testa, Med. Res. Rev. 3, 299 (2004), https://doi.org/10.1002/med.10063
C. Giaginis, and A. Tsantili-Kakoulidou, J. Pharmaceut. Sci. 97, 2984 (2008), https://doi.org/10.1002/jps.21244
G. Cevc, Biochim. Biophys. Acta 1031, 311 (1990), https://doi.org/10.1016/0304-4157(90)90015-5
J. Tocanne, and J. Teissie, Biochim. Biophys. Acta 1031, 111 (1990), https://doi.org/10.1016/0304-4157(90)90005-W
R. Flewelling, and W. Hubbel, Biophys. J. 49, 541 (1986), https://doi.org/10.1016/S0006-3495(86)83664-5
M. Belaya, M.V. Feigel’man, and V.G. Levadnyii, Langmuir 3, 648 (1987), https://doi.org/10.1021/la00077a011
A. Shibata, K. Ikawa, T. Shimmoka, and H. Terada, Biochim. Biophys. Acta 1192, 71 (1994), https://doi.org/10.1016/0005-2736(94)90144-9
M. Dahlberg, and F. Maliniak J Phys Chem B 112, 11655 (2008), https://doi.org/10.1021/jp803414g
W.-C. Hung, M.-T. Lee, F.-Y. Chen, and H.W. Huang, Biophys. J. 92, 3960 (2007), https://doi.org/10.1529/biophysj.106.099234
Y. Levine, Prog. Biophys. Mol. Biol. 24, 1 (1972), https://doi.org/10.1016/0079-6107(72)90003-X
H.A. Perez, A. Disalvo, and M. de los Angeles Frias, Colloid Surf. B. 178, 346 (2019), https://doi.org/10.1016/j.colsurfb.2019.03.022
H.A. Perez, L.M. Alarcon, A.R. Verde, G.A. Appignanesi, R.E. Gimenez, E.A. Disalvo, and M.A. Frias, Biochim. Biophys. Acta 1863, 183489 (2021), https://doi.org/10.1016/j.bbamem.2020.183489
T. Parasassi, M. Stefano, M. Loiero, G. Ravagnan, and E. Gratton, Biophys J. 66, 120 (1994), https://doi.org/10.1016/S0006-3495(94)80763-5
O.P. Bondar, and E.S. Rowe, Biophys J. 76, 956 (1999), https://doi.org/10.1016/S0006-3495(99)77259-0
S. Bandari, H. Chakraborty, D. Covey, and A. Chattopadhyay, Chem. Phys. Lipids 184, 25 (2014), https://doi.org/10.1016/j.chemphyslip.2014.09.001
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).