Structure and function of lamins: norm and pathology

  • А. С. Забірник
  • А. О. Костарєва
  • А. Б. Малашичева
  • О. А. Омельченко
  • Є. Е. Перський
Keywords: lamin; laminopathies; differentiation; MSC; LMNA

Abstract

Lamins are proteins belonging to the intermediate filaments and forming a "nuclear cytoskeleton" – lamina. This review presents the current understanding of the structure and functions of lamins in health and disease. Most attention is paid to lamin A as more important in terms of the development of pathologies and the variety of functions. Particular place is set aside for molecular mechanisms of pathologies resulting from mutations in the lamin proteins, and lamin role in the differentiation and functioning of stem cells.

Downloads

Download data is not yet available.

References

Attur M., Ben A.-Artzi, Yang Q. et al. Perturbation of nuclear lamin A causes cell death in chondrocytes // Arthritis Rheum. – 2012. – Vol.64 (6). – P. 1940–1949.

Benavente R., Krohne G. Involvement of nuclear lamins in postmitotic reorganization of chromatin as demonstrated by microinjection of lamin antibodies // J. Cell Biol. – 1986. – Vol.103. – P. 1847–1854.

Benedetti S., Menditto I., Degano M. et al. Phenotypic clustering of lamin A/C mutations in neuromuscular patients // Neurology. – 2007. – Vol.69. – P. 1285–1292.

Bonne G., Di Barletta M.R., Varnous S. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy // Nat Genet. – 1999. – Vol.21. – P. 285–288.

Borrego-Pinto J., Jegou T., Osorio D. et al. Samp1 is a component of TAN lines and is required for nuclear movement // J. Cell Sci. – 2012. – Vol.125 (5). – P. 1099–1105.

Brodsky G.L., Muntoni F., Miocic S. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement // Circulation. – 2000. – Vol.101. – P. 473–476.

Broers J.L., Machiels B.M., Kuijpers H.J. et al. A- and B-type lamins are differentially expressed in normal human tissues // Histochem. Cell Biol. – 1997. – Vol.107 (6). – P. 505–517.

Bruston F., Delbarre E., Ostlund C. et al. Loss of a DNA binding site within the tail of prelamin A/Contributes to altered heterochromatin anchorage by progerin // FEBS Lett. – 2010. – Vol.584 (14). – P. 2999–3004.

Candelario J., Sudhakar S., Navarro S. et al. Perturbation of wild-type lamin A metabolism results in a progeroid phenotype // Aging Cell. – 2008. – Vol.7. – P. 355–367.

Cao H., Hegele R.A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy // Hum. Mol. Genet. – 2000. – Vol.9. – P. 109–112.

Cao K., Capell B.C., Erdos M.R. et al. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells // Proc. Natl. Acad. Sci. – 2007. – Vol.104. – P. 4949–4954.

Cattin M.E., Bertrand A.T., Schlossarek S. et al. Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity // Hum. Mol. Genet. – 2013. – Vol.22. – P. 3152–3164.

Coffinier C., Chang S., Nobumori C. et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency // PNAS. – 2010. – Vol.107. – P. 5076–5081.

Constantinescu D., Gray H.L., Sammak P.J. et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation // Stem Cells. – 2006. – Vol.24. – P. 177–185.

Corrigan D.P., Kuszczak D., Rusinol A.E. et al. Prelamin A endo-proteolytic processing in vitro by recombinant Zmpste24 // Biochem. J. – 2005. – Vol.387. – P. 129–138.

Crisp M., Liu Q., Roux K. et al. Coupling of the nucleus and cytoplasm: Role of the LINC complex // J. Cell. Biol. – 2006. – Vol.172. – P. 41–53.

De Sandre-Giovannoli A., Bernard R., Cau P. et al. Lamin a truncation in Hutchinson-Gilford progeria // Science. – 2003. – Vol.300. – P.2055.

Dechat T., Adam S., Goldman R. Lamins and chromatin: When structure meets function // Nuclear Adv. Enzyme Regul. – 2008. – Vol.49. – P. 157–166.

Delbarre E., Tramier M., Coppey-Moisan M. et al. The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers // Hum. Mol. Genet. – 2006. – Vol.15. – P. 1113–1122.

Dhe-Paganon S., Werner E.D., Chi Y.I., Shoelson S.E. Structure of the globular tail of nuclear lamin // J. Biol. Chem. – 2002. – Vol.277. – P. 17381–17384.

di Masi A., D'Apice M., Ricordy R. et al. The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation // Cell Cycle. – 2008. – Vol.7. – P. 2030–2037.

Dreuillet C., Harper M., Tillit J. et al. Mislocalization of human transcription factor MOK2 in the presence of pathogenic mutations of lamin A/C // Biol. Cell. – 2008. – Vol.100. – P. 51–61.

Eriksson M., Brown W.T., Gordon L.B. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome // Nature. – 2003. – Vol.423. – P. 293–298.

Fatkin D., MacRae C., Sasaki T. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease // N. Engl. J. Med. – 1999. – Vol.341. – P. 1715–1724.

Funkhouser C., Sknepnek R., Shimi T. et al. Mechanical model of blebbing in nuclear lamin meshworks // PNAS. – 2013. – Vol.110. – P. 3248–3253.

Furukawa K., HottaY. cDNA cloning ofagerm cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells // Embo J. – 1993. – Vol.12. – P. 97–106.

Goldberg M.W., Fiserova J., Huttenlauch I., Stick R. A new model for nuclear lamina organization // Biochem. Soc/ Trans. – 2008. – Vol.36. – P. 1339–1343.

Goldman R.D., Shumaker D.K., Erdos M.R. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome // Proc. Natl. Acad. Sci. – 2004. – Vol.101. – P. 8963–8968.

Gonzalez-Suarez I., Redwood A., Perkins S. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway // Embo J. – 2009. – Vol.28. – P. 2414–2427.

Guelen L., Pagie L., Brasset E. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions // Nature. – 2008. – Vol.453 (7197). – P. 948–951.

Haithcock E., Dayani Y., Neufeld E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans // Proc. Natl. Acad. Sci. USA. – 2005. – Vol.102. – P. 16690–16695.

Han X., Feng X., Rattner J.B., et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor // Nat Cell Biol. – 2008. – Vol.10. – P. 1333–1340.

Hegele R. LMNA mutation position predicts organ system involvement in laminopathies // Clin Genet. – 2005. – Vol.68 (1). – P. 31–34.

Hegele R.A., Cao H., Liu D.M. et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy // Am. J. Hum. Genet. – 2006. – Vol.79 (2). – P. 383–389.

Houben F., De W.H.Vos, Krapels I.P. et al. Cytoplasmic localization of PML particles in laminopathies // Histochem. Cell. Biol. – 2012. – Vol.139 (1). – P. 119–134.

Hutchison C.J., Worman H.J. A-type lamins: guardians of the soma // Nat. Cell. Biol. – 2004. – Vol.6. – P. 1062–1067.

Ivorra C., Kubicek M., Gonzalez J.M. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C // Genes Dev. – 2006. – Vol.20. – P. 307–320.

Johnson B.R., Nitta R.T., Frock R.L. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation // Proc. Natl. Acad. Sci. – 2004. – Vol.101. – P. 9677–9682.

Kind J., van Steensel B. Genome-nuclear lamina interactions and gene regulation // Curr Opin Cell Biol. –2010. – Vol.22 (3). – P. 320–325.

Kubben N., Adriaens M., Meuleman W. et al. Mapping of lamin A- and progerin-interacting genome regions // Chromosoma. – 2012. – Vol.121 (5). – P. 447–464.

Lammerding J., Hsiao J., Schulze P.C. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells // J. Cell. Biol. – 2005. – Vol.170. – P. 781–791.

Li Y., Chu J.S., Kurpinski K. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells // Biophys J. – 2011. – Vol.100 (8). – P. 1902–1909.

Liu J., Rolef Ben-Shahar T., Riemer D., et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes // Mol. Biol. Cell. – 2000. – Vol.11. – P. 3937–3947.

Loewinger L., McKeon F. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm // EMBO J. – 1988. – Vol.7 (8). – P. 2301–2309.

Lu D., Lian H., Zhang X. et al. Lmna E82k mutation activates Fas and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice // PLoS One. – 2010. – Vol.5. – e15167.

Malashicheva A., Zabirnik A., Smolina N. et al. Lamin A/C mutations alter differentiation potential of mesenchymal stem cells // Cell and Tissue Biol. – 2013. – Vol.7 (4). – P. 325–328.

Manju K., Muralikrishna B., Parnaik V.K. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci // J. Cell. Sci. – 2006. – Vol.119. – P. 2704–2714.

Maresca G., Natoli M., Nardella M. et al. LMNA knock-down affects differentiation and progression of human neuroblastoma cells // PLoS One. – 2012. – Vol.7 (9). – e45513.

Mariappan I., Gurung R., Thanumalayan S., Parnaik K. Identification of cyclin D3 as a new interaction partner of lamin A/C // Biochem. Biophys. Res. Commun. – 2007. – Vol.355. – P. 981–985.

Mattout A., Goldberg M., Tzur Y. et al. Specific and conserved sequences in D melanogaster and C elegans lamins and histone H2A mediate the attachment of lamins to chromosomes // J. Cell. Sci. – 2007. – Vol.120. – P. 77–85.

Meaburn K., Cabuy E., Bonne G. et al. Primary laminopathy fibroblasts display altered genome organization and apoptosis // Aging Cell. – 2007. – Vol.6. – P. 139–153.

Melcer S., Hezroni H., Rand E. et al. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation // Nat. Commun. – 2012. – Vol.3. – P.910.

Mewborn S.K., Puckelwartz M.J., Abuisneineh F. et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation // PLoS One. – 2010. – Vol.5 (12). – e14342.

Moir R., Yoon M., Khuon S., Goldman R. Nuclear lamins A and B1: Different pathways of assembly during nuclear envelope formation in living cells // J. Cell. Biol. – 2000. – Vol.151. – P. 1155–1168.

Mounkes L.C., Stewart C.L. Aging and nuclear organization: lamins and progeria // Curr. Opin. Cell Biol. – 2004. – Vol.16. – P. 322–327.

Muchir A., Bonne G., van der Kooi A.J. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B) // Hum. Mol. Genet. – 2000. – Vol.9. – P. 1453–1459.

Muchir A., Pavlidis P., Decostre V. et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy // J. Clin. Invest. – 2007. – Vol.117. – P. 1282–1293.

Nakajima N., Abe K. Genomic structure of the mouse A-type lamin gene locus encoding somatic and germ cell-specific lamins // FEBS Lett. – 1995. – Vol.365. – P. 108–114.

Narula N., Favalli V., Tarantino P. et al. Quantitative expression of the mutated lamin A/C gene in patients with cardiolaminopathy // J. Am. Coll. Cardiol. – 2012. – Vol.60 (19). – P. 1916–1920.

Navarro C., De Sandre-Giovannoli A., Bernard R. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identity restrictive dermopathy as a lethal neonatal laminopathy // Hum. Molec. Genet. – 2004. – Vol.13. – P. 2493–2503.

Novelli G., Muchir A., Sangiuolo F. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C // Am. J. Hum. Genet. – 2002. – Vol.71. – P. 426–431.

Padiath Q.S., Saigoh K., Schiffmann R. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy // Nat Genet. – 2006. – Vol.38 (10). – 1114–1123.

Pajerowski J.D., Dahl K.N., Zhong F.L. et al. Physical plasticity of the nucleus in stem cell differentiation // Proc. Natl. Acad. Sci. – 2007. – Vol.104. – P. 15619–15624.

Parry D.A., Conway J.F., Steinert P.M. Structural studies on lamin. Similarities and differences between lamin and intermediate-filament proteins // Biochem J. – 1986. – Vol.238. – P. 305–308.

Pekovic V., Harborth J., Broers J.L. et al. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts // J. Cell Biol. – 2007. – Vol.176. – P. 163–172.

Peric D.-Hupkes, Meuleman W., Pagie L. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation // Mol. Cell. – 2010. – Vol.38 (4). – P. 603–613.

Peter A., Stick R. Ectopic expression of prelamin a in early Xenopus embryos induces apoptosis // Eur. J. Cell Biol. – 2008. – Vol.87. – P. 879–891.

Quijano-Roy S., Mbieleu B., Bonnemann C.G. et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy // Ann Neurol. – 2008. – Vol.64. – P. 177–186.

Raffaele di Barletta M., Ricci E., Galluzzi G. et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy // Am. J. Hum. Genet. – 2000. – Vol.66. – P. 1407–1412.

Rajendran V., Purohit R., Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein // Amino Acids. – 2012. – Vol.43 (2). – P. 603–615.

Rober R.A., Sauter H., Weber K., Osborn M. Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells // J. Cell Sci. – 1990. – Vol.95. – P. 587–598.

Rusinol A., Sinensky M. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors // J. Cell Sci. – 2006. – Vol.119. – P. 3265–3272.

Scaffidi P., Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing // Nat. Cell Biol. – 2008. – Vol.10. – P. 452–459.

Scaffidi P., Misteli T. Lamin A-dependent nuclear defects in human aging // Science. – 2006. – Vol.312. – P. 1059–1063.

Schatten G., Maul G., Schatten H. et al. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins // Proc. Natl. Acad. Sci. – 1985. – Vol.82. – P. 4727–4731.

Schermelleh L., Carlton P.M., Haase S. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy // Science. – 2008. – Vol.320. – P. 1332–1336.

Shimi T., Pfleghaar K., Kojima S. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription // Genes Dev. – 2008. – Vol.22. – P. 3409–3421.

Shumaker D.K., Dechat T., Kohlmaier A. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging // Proc. Natl. Acad. Sci. – 2006. – Vol.103. – P. 8703–8708.

Sinkovec M., Petrovic D., Volk M., Peterlin B. Familial progressive sinoatrial and atrioventricular conduction disease of adult onset with sudden death, dilated cardiomyopathy, and brachydactyly: a new type of heart-hand syndrome? // Clin Genet. – 2005. – Vol.68. – P. 155–160.

Solovei I., Schermelleh L., During K. et al. Differences in centromere positioning of cycling and postmitotic human cell types // Chromosoma. – 2004. – Vol.112. – P. 410–423.

Spann T.P., Goldman A.E., Wang C. et al. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription // J. Cell Biol. – 2002. – Vol.156. – P. 603–608.

Sullivan T., Escalante-Alcalde D., Bhatt H. et al. Loss of A-type lamin expression compromises nuclear envelope interity leading to muscular dystrophy // J. Cell Biol. – 1999. – Vol.147. – P. 913–920.

Szczerbal I., Foster H.A., Bridger J.M. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system // Chromosoma. – 2009. – Vol.118 (5). – P. 647–663.

Tsai M., Wang S., Heidinger J. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly // Science. – 2006. – Vol.311. – P. 1887–1893.

Tsai M., Zheng Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly // Curr. Biol. – 2005. – Vol.15. – P. 2156–2163.

Vergnes L., Péterfy M., Bergo M. et al. Lamin B1 is required for mouse development and nuclear integrity // PNAS. – 2004. – Vol.101. – P. 10428–10433.

Wheeler M.A., Davies J.D., Zhang Q. et al. Distinct functional do­mains in nesprin-1a and nesprin-2b bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy // Exp. Cell Res. – 2007. – Vol.313. – P. 2845–2857.

Wolf M., Wang L., Alcalai R. et al. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease // J. Mol. Cell Cardiol. – 2008. – Vol.44. – P. 293–303.

Worman H., Ostlund C., Wang Y. Diseases of the nuclear envelope // Cold Spring Harb Perspect Biol. –2010. – Vol.2. – P. 760–776.

Published
2013-05-22
Cited
How to Cite
Забірник, А. С., Костарєва, А. О., Малашичева, А. Б., Омельченко, О. А., & Перський, Є. Е. (2013). Structure and function of lamins: norm and pathology. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 18(1079), 9-23. Retrieved from https://periodicals.karazin.ua/biology/article/view/13730
Section
BIOCHEMISTRY