Recognition of littlesize surface objects the matrix radiometer systems of millimeter bande

  • Г. Г. Осиновый Государственное предприятие «КБ «Южное», Днепр, Украина
Keywords: aircraft, navigation object, radiometric system, millimeter bande

Abstract

The possibility of recognizing small-sized ground objects of the passive matrix radio-metric system of the millimeter range is analyzed. In the recognition process, two tasks are solved: the detection of an object in a given area of space and, if it is detected by the system, the problem of identifying an object is solved, that is, the assignment of an object to a particular type of objects with the corresponding characteristics. An assessment was made of the probability and range of detection of ground-based small-sized objects both by a passive radiometric system and by a passive-active system, that is, a radiometric system with object illumination against the background of the earth's surface by an independent source of broadband noise illumination. An assessment of the detection range of ground-based small-sized objects protected by a camouflage coating shielding the radiation and the object re-reflection of the backlight signal was made. It was concluded that a decrease in the level of radiation by an object using a masking coating of  10dB reduces the detection range of an object by the radiometric system by no less than three times.

Downloads

Download data is not yet available.

References

Zhu X. and Zhu J.-G. Bias-Field-Free microwave oscillator driven by perpendicularly polarized spin current // IEEE Transactions on Magnetics. – Oct. 2007. – V.42, N10. – P.2670–2672.

Zhu J.-G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Transactions on Magnetics. – Jan. 2008. – V.42, N1. – P.125–131.

Zhu J.-G. and Zhu X. Spin transfer induced noise in CPP read heads. // IEEE Transactions on Magnetics. – Jan. 2004. – V.40, N1. – P.182–188.

Choi H. S. et al. Spin-nano-oscillator-based wireless communication // Scientific Reports. – June 2014. – V.4. – P.5486.

Zeng Z., Finocchio G., and Jiang H. Spin transfer nano-oscillators // Nanoscale. – Oct. 2013. – V.5, N.6. – P.2219–2231.

Slonczewski J. C. Current-driven excitation of magnetic multilayers // J. Magn. Magn. Mater. – June 1996. – V.159, N.1–2. – P. L1–L7.

Berger L. Emission of spin waves by a magnetic multilayer traversed by a current // Phys. Rev. B. – Oct. 1996. – V.54, N.13. – P.9353–9358.

Myers E. B., Ralph D. C., Katine J. A., Louie R. N. and Buhrman R. A. Current-induced switching of domains in magnetic multilayer devices // Science. – Aug. 1999. – V.285, N.5429. – P.867-870.

Katine J. A., Albert F. J., Buhrman R. A., Myers E. B. and Ralph D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars // Phys. Rev. Lett. – Apr. 2000. – V.84, N.14. – P.3149–3152.

Thiaville A., Nakatani Y., Miltat J. and Suzuki Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires // Europhys. Lett. – March 2005. – V.69, N.6. – P.990–996.

Couture S., Chang R., Volvach I., Goncharov A. and Lomakin V. Coupled finite-element micromagnetic-integral equation electromagnetic simulator for modeling magnetization-eddy currents dynamics // IEEE Transactions on Magnetics. – December 2017. – V.53, N.12.

Volvach I., Kuteifan M., Lubarda M.V. and Lomakin V. Circuit-Integrated Micromagnetic Modeling of MRAM Devices // 62-nd Annual Conference on Magnetism and Magnetic Materials. – Pittsburgh, Pennsylvania. – November 6-10, 2017. – P.658.

Kuteifan M., Volvach I. and Lomakin V. Forward Flux Sampling Method with Spin Transfer Torque for the Calculation of Thermal Relaxation Times of Free Layers // 62-nd Annual Conference on Magnetism and Magnetic Materials. – Pittsburgh, Pennsylvania. – November 6-10, 2017. – P.659.

Volvach I, Kuteifan M., Marko V. Lubarda and Lomakin V. Circuit-Integrated Micromagnetic Modeling of MRAM Devices // Special joint poster session on MRAM, IEEE 63-rd International Electron Devices Meeting IEDM. – San Francisco, California. – December 4–7, 2016.

Volvach I., Kuteifan M., Lubarda M. V. and Lomakin V. Integrating FastMag with NGSPICE Framework // Research Review & Advisory Council Meeting (CMRR). – San Diego, California. – May 18-19, 2017. – P.19.

Donahue M. J. and Porter D. G. OOMMF user’s guide // Nat.Inst. Standards Technol. – Gaithersburg, MD, USA, Sep. 1999. – Interagency Rep.NISTIR 6376.

Fu S., Cui W., Hu M., Chang R., Donahue M. J. and Lomakin V. Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units // in IEEE Transactions on Magnetics. – April 2016. – V.52, N.4, P.1–9.

Vansteenkiste A. and Wiele B. V. MuMax: a new high performance micromagnetic simulation tool // J. Magn. Magn. Mater. – Nov. 2011. – V.323, N.21. – P.2585–2591.

Lopez-Diaz L., Aurelio D., Torres L., Martinez E., Hernandez-Lopez M. A., Gomez J., Alejos O., Carpentieri M., Finocchio G. and Consolo G. Micromagnetic simulations using Graphics Processing Units // J. Phys. D: Appl. Phys. – July 2012. – V.45, N.32. – 323001.

Recio G. and Estebanez C. Micromagnetic modeling on magnetization dynamics with lossy magnetic material in thin film heads by FDTD calculations // Appl. Comput. Electrom. – Sept. 2012. – V.27, N.9. – P.717–725.

Fischbacher T., Franchin M., Bordignon G. and Fangohr H. A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag // IEEE Trans. Magn. – June 2007. – V.43, N.6. – P.2896–2898.

Scholz W., Fidler J., Schrefl T., Suess D., Dittrich R., Forster H., Tsiantos V. Scalable parallel micromagnetic solvers for magnetic nanostructurese // Comp. Mater. Sci. – Oct. 2003. – V.28, N.2. – P.366–383.

Kakay A., Westphal E. and Hertel R. Speedup of FEM micromagnetic simulations with Graphical Processing Units // IEEE Trans. Magn. – June 2010. – V.46, N.6. – P.2303–2306.

Chang R., Li S., Lubarda M. V., Livshitz B. and Lomakin V. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited) // Journal of Applied Physics. – 2011 – V.109. – 07D358.

Scheinfein M. R. LLG Micromagnetics Simulator. – 2008 – [Online]. Available: http://llgmicro.home.mindspring.com

Takano K., Salhi E.-A., Sakai M., and Dovek M. Write head analysis by using a parallel micromagnetic FEM // IEEE Trans. Magn. – Oct. 2005. – V.41. – P.2911–2913.

Donahue M. Parallelizing a micromagnetic program for use on multiprocessor shared memory computers // IEEE Trans. Magn. – Oct. 2009. – V.45, N.10. – P.3923–3925.

Fu S., Cui W., Hu M., Chang R., Donahue M. J. and Lomakin V. Finite difference micromagnetic solvers with object oriented micromagnetic framework (OOMMF) on Graphics Processing Units // IEEE Trans. Magn. – 2016.

Chang R., Escobar M. A., Li S., Lubarda M. V. and Lomakin V. Accurate evaluation of exchange fields in finite element micromagnetic solvers // Journal of Applied Physics. – 2012. – V.111. – 07D129.

Escobar M. A., Lubarda M. V., Li S., Chang R., Livshitz B. and Lomakin V. Advanced micromagnetic analysis of write head dynamics using Fastmag // IEEE Trans. Magn. – May 2012. – V.48, N.5, P.1731–1737.

Brown W. F. Micromagnetics. – New York, NY, USA: Interscience. – 1963.

Haus H. A. and Melcher J. R. Electromagnetic Fields and Energy. – Englewood Cliffs, NJ, USA: Prentice-Hall. – 1989.

Knoepfel H. E. Magnetic Fields. – Hoboken, NJ, USA: Wiley. – 2000.

Brown P. N., Byrne G. D. and Hindmarsh A. C. VODE: A variable coefficient ODE solver // SIAM J. Sci. Stat. Comput. – 1989. – V.10, N.5, P.1038–1051.

Jin J.-M. The Finite Element Method Electromagnetics. – Hoboken, NJ, USA: Wiley. – 2014.

Bossavit A. and Verite J.-C. A mixed FEM-BIEM method to solve 3-D eddy-current problems // IEEE Trans. Magn. – Mar. 1982. – V.MAG–18, N.2, P.431–435.

Jackson J. D. Classical Electrodynamics. – Hoboken, NJ, USA: Wiley. – 1999.

Fredkin D. R. and Koehler T. R. Hybrid method for computing demagnetizing fields // IEEE Trans. Magn. – Mar. 1990. – V.26, N.2, P.415–417.

Saad Y. Iterative Methods for Sparse Linear Systems. – Philadelphia, PA, USA: SIAM. – 2003.

Bleszynski E., Bleszynski M. and Jaroszewicz T. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems // Radio Sci. – Sep. 1996. – V.31, N.5, P.1225–1251.

Volvach I., Lubarba M.V. and Lomakin V. SPICE modeling coupled with LLG equation // Conference on Material Science and Engineering. – University of California, San Diego, San Diego, CA.

Чеботарев В.И., Думин А.Н., Холодов В.И. Генераторы электрических колебаний. Учебно-методическое пособие по основам радиоэлектроники для самостоятельной работы студентов физических специальностей / Харьков: ХНУ имени В.Н. Каразина, 2007, 84 с.7

Published
2018-05-14
Cited
How to Cite
Осиновый, Г. Г. (2018). Recognition of littlesize surface objects the matrix radiometer systems of millimeter bande. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (28), 34-43. Retrieved from https://periodicals.karazin.ua/radiophysics/article/view/12592