Recognition of littlesize surface objects the matrix radiometer systems of millimeter bande
Abstract
The possibility of recognizing small-sized ground objects of the passive matrix radio-metric system of the millimeter range is analyzed. In the recognition process, two tasks are solved: the detection of an object in a given area of space and, if it is detected by the system, the problem of identifying an object is solved, that is, the assignment of an object to a particular type of objects with the corresponding characteristics. An assessment was made of the probability and range of detection of ground-based small-sized objects both by a passive radiometric system and by a passive-active system, that is, a radiometric system with object illumination against the background of the earth's surface by an independent source of broadband noise illumination. An assessment of the detection range of ground-based small-sized objects protected by a camouflage coating shielding the radiation and the object re-reflection of the backlight signal was made. It was concluded that a decrease in the level of radiation by an object using a masking coating of 10dB reduces the detection range of an object by the radiometric system by no less than three times.
Downloads
References
Zhu X. and Zhu J.-G. Bias-Field-Free microwave oscillator driven by perpendicularly polarized spin current // IEEE Transactions on Magnetics. – Oct. 2007. – V.42, N10. – P.2670–2672.
Zhu J.-G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Transactions on Magnetics. – Jan. 2008. – V.42, N1. – P.125–131.
Zhu J.-G. and Zhu X. Spin transfer induced noise in CPP read heads. // IEEE Transactions on Magnetics. – Jan. 2004. – V.40, N1. – P.182–188.
Choi H. S. et al. Spin-nano-oscillator-based wireless communication // Scientific Reports. – June 2014. – V.4. – P.5486.
Zeng Z., Finocchio G., and Jiang H. Spin transfer nano-oscillators // Nanoscale. – Oct. 2013. – V.5, N.6. – P.2219–2231.
Slonczewski J. C. Current-driven excitation of magnetic multilayers // J. Magn. Magn. Mater. – June 1996. – V.159, N.1–2. – P. L1–L7.
Berger L. Emission of spin waves by a magnetic multilayer traversed by a current // Phys. Rev. B. – Oct. 1996. – V.54, N.13. – P.9353–9358.
Myers E. B., Ralph D. C., Katine J. A., Louie R. N. and Buhrman R. A. Current-induced switching of domains in magnetic multilayer devices // Science. – Aug. 1999. – V.285, N.5429. – P.867-870.
Katine J. A., Albert F. J., Buhrman R. A., Myers E. B. and Ralph D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars // Phys. Rev. Lett. – Apr. 2000. – V.84, N.14. – P.3149–3152.
Thiaville A., Nakatani Y., Miltat J. and Suzuki Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires // Europhys. Lett. – March 2005. – V.69, N.6. – P.990–996.
Couture S., Chang R., Volvach I., Goncharov A. and Lomakin V. Coupled finite-element micromagnetic-integral equation electromagnetic simulator for modeling magnetization-eddy currents dynamics // IEEE Transactions on Magnetics. – December 2017. – V.53, N.12.
Volvach I., Kuteifan M., Lubarda M.V. and Lomakin V. Circuit-Integrated Micromagnetic Modeling of MRAM Devices // 62-nd Annual Conference on Magnetism and Magnetic Materials. – Pittsburgh, Pennsylvania. – November 6-10, 2017. – P.658.
Kuteifan M., Volvach I. and Lomakin V. Forward Flux Sampling Method with Spin Transfer Torque for the Calculation of Thermal Relaxation Times of Free Layers // 62-nd Annual Conference on Magnetism and Magnetic Materials. – Pittsburgh, Pennsylvania. – November 6-10, 2017. – P.659.
Volvach I, Kuteifan M., Marko V. Lubarda and Lomakin V. Circuit-Integrated Micromagnetic Modeling of MRAM Devices // Special joint poster session on MRAM, IEEE 63-rd International Electron Devices Meeting IEDM. – San Francisco, California. – December 4–7, 2016.
Volvach I., Kuteifan M., Lubarda M. V. and Lomakin V. Integrating FastMag with NGSPICE Framework // Research Review & Advisory Council Meeting (CMRR). – San Diego, California. – May 18-19, 2017. – P.19.
Donahue M. J. and Porter D. G. OOMMF user’s guide // Nat.Inst. Standards Technol. – Gaithersburg, MD, USA, Sep. 1999. – Interagency Rep.NISTIR 6376.
Fu S., Cui W., Hu M., Chang R., Donahue M. J. and Lomakin V. Finite-Difference Micromagnetic Solvers With the Object-Oriented Micromagnetic Framework on Graphics Processing Units // in IEEE Transactions on Magnetics. – April 2016. – V.52, N.4, P.1–9.
Vansteenkiste A. and Wiele B. V. MuMax: a new high performance micromagnetic simulation tool // J. Magn. Magn. Mater. – Nov. 2011. – V.323, N.21. – P.2585–2591.
Lopez-Diaz L., Aurelio D., Torres L., Martinez E., Hernandez-Lopez M. A., Gomez J., Alejos O., Carpentieri M., Finocchio G. and Consolo G. Micromagnetic simulations using Graphics Processing Units // J. Phys. D: Appl. Phys. – July 2012. – V.45, N.32. – 323001.
Recio G. and Estebanez C. Micromagnetic modeling on magnetization dynamics with lossy magnetic material in thin film heads by FDTD calculations // Appl. Comput. Electrom. – Sept. 2012. – V.27, N.9. – P.717–725.
Fischbacher T., Franchin M., Bordignon G. and Fangohr H. A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag // IEEE Trans. Magn. – June 2007. – V.43, N.6. – P.2896–2898.
Scholz W., Fidler J., Schrefl T., Suess D., Dittrich R., Forster H., Tsiantos V. Scalable parallel micromagnetic solvers for magnetic nanostructurese // Comp. Mater. Sci. – Oct. 2003. – V.28, N.2. – P.366–383.
Kakay A., Westphal E. and Hertel R. Speedup of FEM micromagnetic simulations with Graphical Processing Units // IEEE Trans. Magn. – June 2010. – V.46, N.6. – P.2303–2306.
Chang R., Li S., Lubarda M. V., Livshitz B. and Lomakin V. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited) // Journal of Applied Physics. – 2011 – V.109. – 07D358.
Scheinfein M. R. LLG Micromagnetics Simulator. – 2008 – [Online]. Available: http://llgmicro.home.mindspring.com
Takano K., Salhi E.-A., Sakai M., and Dovek M. Write head analysis by using a parallel micromagnetic FEM // IEEE Trans. Magn. – Oct. 2005. – V.41. – P.2911–2913.
Donahue M. Parallelizing a micromagnetic program for use on multiprocessor shared memory computers // IEEE Trans. Magn. – Oct. 2009. – V.45, N.10. – P.3923–3925.
Fu S., Cui W., Hu M., Chang R., Donahue M. J. and Lomakin V. Finite difference micromagnetic solvers with object oriented micromagnetic framework (OOMMF) on Graphics Processing Units // IEEE Trans. Magn. – 2016.
Chang R., Escobar M. A., Li S., Lubarda M. V. and Lomakin V. Accurate evaluation of exchange fields in finite element micromagnetic solvers // Journal of Applied Physics. – 2012. – V.111. – 07D129.
Escobar M. A., Lubarda M. V., Li S., Chang R., Livshitz B. and Lomakin V. Advanced micromagnetic analysis of write head dynamics using Fastmag // IEEE Trans. Magn. – May 2012. – V.48, N.5, P.1731–1737.
Brown W. F. Micromagnetics. – New York, NY, USA: Interscience. – 1963.
Haus H. A. and Melcher J. R. Electromagnetic Fields and Energy. – Englewood Cliffs, NJ, USA: Prentice-Hall. – 1989.
Knoepfel H. E. Magnetic Fields. – Hoboken, NJ, USA: Wiley. – 2000.
Brown P. N., Byrne G. D. and Hindmarsh A. C. VODE: A variable coefficient ODE solver // SIAM J. Sci. Stat. Comput. – 1989. – V.10, N.5, P.1038–1051.
Jin J.-M. The Finite Element Method Electromagnetics. – Hoboken, NJ, USA: Wiley. – 2014.
Bossavit A. and Verite J.-C. A mixed FEM-BIEM method to solve 3-D eddy-current problems // IEEE Trans. Magn. – Mar. 1982. – V.MAG–18, N.2, P.431–435.
Jackson J. D. Classical Electrodynamics. – Hoboken, NJ, USA: Wiley. – 1999.
Fredkin D. R. and Koehler T. R. Hybrid method for computing demagnetizing fields // IEEE Trans. Magn. – Mar. 1990. – V.26, N.2, P.415–417.
Saad Y. Iterative Methods for Sparse Linear Systems. – Philadelphia, PA, USA: SIAM. – 2003.
Bleszynski E., Bleszynski M. and Jaroszewicz T. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems // Radio Sci. – Sep. 1996. – V.31, N.5, P.1225–1251.
Volvach I., Lubarba M.V. and Lomakin V. SPICE modeling coupled with LLG equation // Conference on Material Science and Engineering. – University of California, San Diego, San Diego, CA.
Чеботарев В.И., Думин А.Н., Холодов В.И. Генераторы электрических колебаний. Учебно-методическое пособие по основам радиоэлектроники для самостоятельной работы студентов физических специальностей / Харьков: ХНУ имени В.Н. Каразина, 2007, 84 с.7