Wave diffraction by planar graphene grating placed above perfectly electric conducting plane

  • М. Е. Калиберда
  • С. А. Погарский
  • М. П. Роюк
  • Т. А. Ильина
Keywords: graphene strip, Kubo formalism, singular integral equation

Abstract

Wave diffraction of the H-polarized electromagnetic wave by the graphene strip grating placed above perfectly electric conducting plane is considered. The mathematical model is based on the method of singular integral equations. Pseudodifferential Hilbert operator is used. Scattered field is expressed via unknown spectral functions. The conductivity of graphene strips is determined from Kubo formalism. The numerical solution is obtained by the method of discrete singularities. Dependences of scattering and absorption cross sections are represented.

Downloads

Download data is not yet available.

References

Geim K. The rise of graphene/ K. Geim, K. S. Novoselov // Nature Mater. – 2007. – Vol. 6. – P. 183-191.

Otsuji T. Graphene-based devices in terahertz science and technology/ T. Otsuji, S. A. Boubanga Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, V. Ryzhii // J. Phys. D: Appl. Phys. – 2012. – Vol. 45, P. 303001.

Tamagnone M. Reconfigurable THz plasmonic antenna concept using a graphene stack/ M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, J. Perruisseau-Carrier // Appl. Phys. Lett. – 2012. – Vol. 101. – P. 214102.

Francescato Y. Graphene sandwiches as a platform for broadband molecular spectroscopy/ Y. Francescato, V. Giannini, J. Yang, M. Huang, and S. A. Maier // ACS Photonics. – 2014. – Vol. 1, no. 5. – P. 437-443.

Han M. Y. Energy band gap engineering of graphene nanoribbons/ M. Y. Han, B. Oezyilmaz, Y. Zhang, P. Kim // Phys. Rev. Lett. – 2017, Vol. 98, no. 20. – P. 206805.

Hanson G. W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene/ G. W. Hanson // J. of Appl. Phys. – 2008. – Vol. 103. – P. 064302.

Shao Y. A review of computational electromagnetic methods for graphene modeling/ Y. Shao, J. J. Yang, M. Huang // Int. J. of Antennas Propag. – 2016. – P. 7478621.

Huidobro P. A. Graphene, plasmons and transformation optics/ P. A. Huidobro, M. Kraft, R. Kun, S. A. Maier, J. B. Pendry // J. of Optics. – 2016. – Vol. 18. – P. 044024.

Голованов О. А. Электродинамический расчет коэффициентов прохождения тем-волны через многослойные периодические структуры графен-диэлектрик в терагерцовом диапазоне/ О. А. Голованов, Г. С. Макеева, В. В. Вареница, Известия высших учебных заведений. Поволжский регион. Физико-математические науки. – 2014. – T. 32, №. 4. – С. 108-122.

Shapoval O. V. Bulk refractive-index sensitivities of the THz-range plasmon resonances on a micro-size graphene strip / O. V. Shapoval, A. I. Nosich // IOP J. of Physics D: Applied Physics. – 2016. – Vol. 49, no. 5. – P. 055105/8.

Balaban M. V. THz wave scattering by a graphene strip and a disk in the free space: integral equation analysis and surface plasmon resonances / M. V. Balaban, O. V. Shapoval, A. I. Nosich // J. Opt. – 2013. – Vol. 15. – P. 1-9.

Kaliberda M. E. Modeling of Graphene Planar Grating in the THz Range by the Method of Singular Integral Equations/ M. E. Kaliberda, L. M. Lytvynenko, S. A. Pogarsky // Frequenz. – 2018. – DOI: 10.1515/freq- 2017-0059.

Гандель Ю. В. Метод дискретных особенностей в задачах электродинамики / Ю. В. Гандель // Вопросы кибернетики. М: Издательство АН СССР. – 1986. – Вып. 124. – С. 166-183.

Гандель Ю. В. Метод парных и сингулярных интегральных уравнений в задачах дифракции на ограниченных решетках / Ю. В. Гандель // Электромагнитные явления. – 1998. – Т.1.– №2. – С.220- 232.

Published
2017-11-30
Cited
How to Cite
Калиберда, М. Е., Погарский, С. А., Роюк, М. П., & Ильина, Т. А. (2017). Wave diffraction by planar graphene grating placed above perfectly electric conducting plane. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (27), 49-52. Retrieved from https://periodicals.karazin.ua/radiophysics/article/view/11417