Chlorine residual behavior in water disinfection using combined sand media with chlorine application
Abstract
Introduction. Water is a need for every human being in all parts of the world. The demand for water, particularly clean water, is expected to increase in line with population growth. In Indonesia, wells providing access to both shallow and deep groundwater sources serve as the primary source of clean water Microbiological contamination of water causes a bad impact, especially on health. The water supply system is a fundamental component of sustainable urban development. Nevertheless, it frequently encounters a range of complex challenges, especially in developing nations.
The purpose of article. The objective of this study is to investigate the concentration of residual chlorine over varying contact times using different media combinations, namely black sand, silica sand, and white sand, to evaluate their effectiveness in sustaining chlorine levels during water treatment.
Research methods. This research employed a quasi-experimental design to evaluate residual chlorine levels in treated water using various types of sand integrated with chlorine within diffuser pipes. A total of 720 liters of water was used, divided into 36 reservoirs. holding 2.5 mg of chlorine each of which contained 20 litres and 500 grams of one of three types of sand: black sand, white sand, or silica sand. Water samples in 20-litre containers were treated with a chlorine sprayer for exposure periods of 30, 45, and 60 minutes. The study assessed several parameters, including temperature, pH, total dissolved solids (TDS), and residual chlorine. Data were analyzed and presented using univariate and bivariate tables, with statistical testing conducted using one-way ANOVA.
Result. The results indicated that the chlorine diffuser containing white sand exceeded the permissible residual chlorine threshold at contact times of 45 and 60 minutes. Statistical analysis using one-way ANOVA revealed a significant difference in residual chlorine concentrations between the silica sand and black sand media (p < 0.05). However, no statistically significant difference was observed in the chlorine concentrations over time for the white sand diffuser. These findings suggest that white sand may lead to prolonged chlorine retention, potentially resulting in concentrations above recommended limits
Scientific novelty and practical value. for the first time, an analysis that the various types of sand in the chlorine diffuser have differences in the remaining chlorine in the water so that it can be used as a reference for further research in water treatment.
Downloads
References
Adams, E. A., Adams, Y. J., & Koki, C. (2021). Water, sanitation, and hygiene (WASH) insecurity will exacerbate the toll of COVID-19 on women and girls in low-income countries. Sustainability: Science, Practice, and Policy, 17(1), 86–90. https://doi.org/10.1080/15487733.2021.1875682
Adzura, Mitha, Fathmawati Fathmawati, Y. Y. (2021). Hubungan Sanitasi, Air Bersih dan Mencuci Tangan dengan Kejadian Stunting pada Balita di Indonesia. Frontiers in Neuroscience, 14(1), 1–13. https://doi.org/10.32382/sulolipu.v21i1.2098
Alftessi, S. A., Othman, M. H. D., Adam, M. R., Farag, T. M., Ismail, A. F., Rahman, M. A., Jaafar, J., Habib, M. A., Raji, Y. O., & Hubadillah, S. K. (2021). Novel silica sand hollow fibre ceramic membrane for oily wastewater treatment. Journal of Environmental Chemical Engineering, 9(1), 104975. https://doi.org/10.1016/j.jece.2020.104975
Ali, A. S., Gari, S. R., Goodson, M. L., Walsh, C. L., Dessie, B. K., & Ambelu, A. (2023). The impact of wastewater-irrigated urban agriculture on microbial quality of drinking water at household level in Addis Ababa, Ethiopia. Urban Water Journal, 20(9), 1207–1218. https://doi.org/10.1080/1573062X.2023.2253215
Asyfiradayati, R. (2017). Total Coliform Air Hujan Pada Tempat Penampungan Air Hujan (PAH) Skala Rumah Tangga Penduduk Kabupaten Lamongan. Prosiding - Semnas & Call for Papers, 37–40. https://publikasiilmiah.ums.ac.id/handle/11617/8971
Asyfiradayati, R., Budiyati, E., Porusia, M., Athaya, M. R., Muzakki, A. Z., Nindyasari, J. B., & Yatim, S. R. M. (2025). Evaluation of Adulticidal Chlorine with Black Sand, White Sand and Silica Sand for Decline Coliform Bacteria. Jurnal Kesehatan Lingkungan, 17(3), 268–276. https://doi.org/10.20473/jkl.v17i3.2025.268-276
Asyfiradayati, R. M. A. S., S., E., & P, O. (2022). UJi Bakteriologis Air Sumur di Beberapa Perumahan Kecamatan Kartasura.
Benwic, A., Kim, E., Khema, C., Phanna, C., Sophary, P., & Cantwell, R. E. (2018). Factors associated with post-treatment E. coli contamination in households practising water treatment: a study of rural Cambodia. International Journal of Environmental Health Research, 28(2), 178–191. https://doi.org/10.1080/09603123.2018.1453055
Clayton, G. E., Thorn, R. M. S., & Reynolds, D. M. (2021). The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water. Npj Clean Water, 4(1). https://doi.org/10.1038/s41545-021-00139-w
D., H. J., J., H. L. M., Ana, E.-Y., & A., S. J. (2024). Enhancing Microbial Disinfection in Household Water Treatment by Combining a Silver–Ceramic Tablet with Copper and Chlorine Technologies. Journal of Environmental Engineering, 150(7), 4024026. https://doi.org/10.1061/JOEEDU.EEENG-7555
De Luca, V., Carginale, V., Supuran, C. T., & Capasso, C. (2022). The gram-negative bacterium Escherichia coli as a model for testing the effect of carbonic anhydrase inhibition on bacterial growth. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2092–2098. https://doi.org/10.1080/14756366.2022.2101644
Dharmawan, I. W. S., Siregar, C. A., Narendra, B. H., Kadek, N., & Undaharta, E. (2023). Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate.
Djamel Ghernaout. (2018). Water Treatment Chlorination : An Updated Mechanistic Insight Review. Chemistry Research Journal, 4(2), 125–138.
Elvina Sophia Ranti, Maurisa Yuant Khairani, & Triastuti Rahayu. (2024). Improve The Microbiological Quality of Groundwater Around Bonoloyo Cemetery by Boiling. Quagga: Jurnal Pendidikan Dan Biologi, 16(2), 118–126. https://doi.org/10.25134/quagga.v16i2.327
Fibrianti, E. A., Thohari, I., & Marlik, M. (2021). Hubungan Sarana Sanitasi Dasar dengan Kejadian Stunting di Puseksmas Loceret, Nganjuk. Jurnal Kesehatan, 14(2), 127–132. https://doi.org/10.32763/juke.v14i2.339
Fisher, I., Kastl, G., & Sathasivan, A. (2023). Validity of chlorine-wall reaction models for drinking water distribution systems. Urban Water Journal, 20(9), 1157–1168. https://doi.org/10.1080/1573062X.2023.2241437
Griffiths, J. K. (2017). Waterborne diseases.
Hafidzna Hanif, A., & Anna, A. N. (2021). Analisis Spasial Kandungan Bakteri Coliform Pada Air Tanah Dangkal Di Kecamatan Colomadu Kabupaten Karanganyar. Universitas Muhammadiyah Surakarta. http://eprints.ums.ac.id/id/eprint/93402
Jesika, P., & Hilal, N. (2016). Hubungan Jenis Sumber Air Dan Personal Hygiene Dengan Kejadian Penyakit Dermatitis Di Desa Kedungrandu Kecamatan Patikraja Kabupaten Banyumas Tahun 2016. 35, 322–327. https://doi.org/10.31983/keslingmas.v36i4.3131
Jumadi, J., Yuli P, Danaryono, & Umrotun. (2025). Pemberdayaan Masyarakat dalam Pengelolaan Air Bersih Berkelanjutan melalui Program Air Minum Muhammadiyah (PAMMU) di Desa Kadipiro. 5(5). https://doi.org/10.59818/jpm.v5i5.1933
Permenkes 492/IV/2010, (2010).
kuswanto., Saudin yuniarto, I. H. (2021). Chlorine Diffuser Aplication to Reduce Coliform Numbers in the Wells. Jurnal Kesehatan Mayarakat, 13, 168–181.
Kwio-Tamale, J. C., & Onyutha, C. (2024). Influence of physical and water quality parameters on residual chlorine decay in water distribution network. Heliyon, 10(10), e30892. https://doi.org/10.1016/j.heliyon.2024.e30892
Macedo, D. O., & Janzen, J. G. (2022). Modelling the behaviour of chlorine within a drinking water distribution system following a microbial contamination event. Urban Water Journal, 19(5), 531–537. https://doi.org/10.1080/1573062X.2022.2030370
Made, N., Putri, A., Nadhifah, D. F., Marques, M. G. J. V, Stephanie, I., & Wikaningrum, T. (2024). Chlorine Residual in Wastewater Treatment : Implication for Pathogen Inactivation and Environmental Impact. 9, 341–347.
Marchesi, I., Paduano, S., Frezza, G., Sircana, L., Vecchi, E., Zuccarello, P., Oliveri Conti, G., Ferrante, M., Borella, P., & Bargellini, A. (2020). Safety and Effectiveness of Monochloramine Treatment for Disinfecting Hospital Water Networks. International Journal of Environmental Research and Public Health, 17(17). https://doi.org/10.3390/ijerph17176116
McGrath, J., Maleki, M., Bouchard, C., Pelletier, G., & Rodriguez, M. J. (2021). Bulk and pipe wall chlorine degradation kinetics in three water distribution systems. Urban Water Journal, 18(7), 512–521. https://doi.org/10.1080/1573062X.2021.1893368
Meehan, K., Jurjevich, J. R., Chun, N. M. J. W., & Sherrill, J. (2020). Geographies of insecure water access and the housing–water nexus in US cities. Proceedings of the National Academy of Sciences of the United States of America, 117(46), 28700–28707. https://doi.org/10.1073/pnas.2007361117
Regulation of Ministry of Health Republic Indonesia No. 2 Tahun 2023 about Environmental Health, Kemenkes Republik Indonesia 1 (2023).
Monteiro, L., Carneiro, J., & Covas, D. I. C. (2020). Modelling chlorine wall decay in a full-scale water supply system. Urban Water Journal, 17(8), 754–762. https://doi.org/10.1080/1573062X.2020.1804595
Nagar, A., & Pradeep, T. (2020). Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano, 14(6), 6420–6435. https://doi.org/10.1021/acsnano.9b01730
Pangestu, M. P., & Lusno, M. F. D. (2025). Kualitas Air Minum Rumah Tangga di Indonesia Berdasarkan Parameter Fisik, Kimia, dan Mikrobiologi: Studi Cross-Sectional Mengacu pada Standar Nasional. Jurnal Penelitian Inovatif, 5(2), 1689–1696. https://doi.org/10.54082/jupin.1534
Porusia, M., Asyfiradayati, R., Ratna, S., Putri, S., & Dwinanda, S. (2022). Comparison of Microbiological Quality of Well Water and Contaminated River Water in Open Defecation Area. 49(Ichwb 2021), 95–100. https://doi.org/10.2991/ahsr.k.220403.013
Raihani, N., Rahayuwati, L., Yani, D. I., & Rakhmawati, W. (2023). Hubungan Ketersediaan Sarana Sanitasi Dasar Dengan Kejadian Stunting Pada Balita the Relationship Between Availability Basic Sanitation with Toddlers Stunting Incidence At Sukamulya Village. 6(1), 35–43. https://doi.org/http://dx.doi.org/10.24198/jnc.v6i1.44429
Rongre, A. J. P., Joseph, W. B. S., & Pinontoan, O. R. (2018). Kandungan Escherichia Coli Dan Kondisi Fisik Sumur Gali Di Kelurahan Kakaskasen Iii Lingkungan Iii Kecamatan Tomohon Utara Kota Tomohon. Jurnal KESMAS, 7(4), 1–6. https://ejournal.unsrat.ac.id/index.php/kesmas/article/download/23181/22874
Saputri, E. T., & Efendy, M. (2020). Kepadatan Bakteri Coliform Sebagai Indikator Pencemaran Biologis Di Perairan Pesisir Sepuluh Kabupaten Bangkalan. Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan, 1(2), 243–249. https://doi.org/10.21107/juvenil.v1i2.7579
Saputri, N., & Astuti, Y. P. (2019). Hubungan Faktor Lingkungan Dengan Kejadian Diare Pada Balita Di Puskesmas Bernung. Jurnal Ilmu Keperawatan Dan Kebidanan, 10(1), 101–110. https://ejr.umku.ac.id/index.php/jikk/article/view/619/378
Solomon, E. T., Robele, S., Kloos, H., & Mengistie, B. (2020). Effect of household water treatment with chlorine on diarrhea among children under the age of five years in rural areas of Dire Dawa, eastern Ethiopia: A cluster randomized controlled trial. Infectious Diseases of Poverty, 9(1), 1–13. https://doi.org/10.1186/s40249-020-00680-9
Sutapa, I. D. A., Fakhrudin, M., & Yogaswara, H. (2021). Implementation of ecohydrology to support sustainable water resources management in tropical region, Indonesia. Ecohydrology & Hydrobiology, 21(3), 501–515. https://doi.org/10.1016/j.ecohyd.2021.08.010
Suyanto, B., Indraswati, D., Hendrarinata, F., Jayadi, H., Santoso, H., & Nugroho, W. (2022). Potential of Solar Cells as Energy Disinfection Machines for Water Sources. 12, 135–143. https://doi.org/10.31838/ecb/2023.12.s3.019
Vaidya, R., Kumar, K. R. S., Mohan Kumar, M. S., & Rao, L. (2023). Chlorine degradation in continuous and intermittent drinking water supply networks. Urban Water Journal, 20(1), 60–73. https://doi.org/10.1080/1573062X.2022.2139275
Wagdy, R., Mubarak, M. F., Mohamed, R. S., & El Shahawy, A. (2024). Industrial-scale feasibility for textile wastewater treatment via Photocatalysis-adsorption technology using black sand and UV lamp. RSC Advances, 14(15), 10776–10789. https://doi.org/10.1039/d4ra00421c
Wei, Y., Wu, H., Zhang, X., Liang, Y., Shi, D., Wang, L., Li, H., Yu, H., Yang, D., Zhou, S., Chen, T., Yang, Z., Li, J., & Jin, M. (2024). Comparative analysis of chlorine-resistant bacteria after chlorination and chloramination in drinking water treatment plants. Journal of Hazardous Materials, 469, 134075. https://doi.org/10.1016/j.jhazmat.2024.134075
WHO. (2018). E. coli.
WHO. (2022). Guidelines for drinking-water quality: incorporating the first and second addenda. In WHO (Vol. 11, Issue 1). https://www.who.int/publications/i/item/9789240045064
Yantu, S. S., Warouw, F., & Umboh, J. M. L. (2021). Hubungan Antara Sarana Air Bersih dan Jamban Keluarga dengan Kejadian Diare Pada Balita di Desa Waleure. Jurnal KESMAS, 10(6), 24–30. https://ejournal.unsrat.ac.id/v3/index.php/kesmas/article/view/35445

This work is licensed under a Creative Commons Attribution 4.0 International License.
