The system for near-real time air pollution monitoring over cities based on the Sentinel-5P satellite data

  • Mykhailo Savenets Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine https://orcid.org/0000-0001-9429-6209
  • Andrii Oreshchenko Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine https://orcid.org/0000-0002-8363-6885
  • Liudmyla Nadtochii Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine https://orcid.org/0000-0003-3038-5960
Keywords: atmospheric air quality, nitrogen dioxide, carbon monoxide, TROPOMI, monitoring, pollution

Abstract

Introduction. Air pollution heterogeneity and rapid urbanization impose numerous constraints on available near-surface air quality monitoring. The solution for effective warning comes with the integration of different data, including remote sensing. Satellite data cannot answer whether dangerous pollution levels are observed; however, it provides a complete picture and may detect air pollution transportation towards or away from cities. The possibilities for effective near-real time (NRTI) monitoring have significantly improved with the launch of the Sentinel-5P satellite. The study aimed to describe the developed system for NRTI air pollution monitoring over Kharkiv, Kryvyi Rig, Kyiv, and Odesa based on NO2 and CO data derived from the Sentinel-5P satellite.

Data and methodology. The NRTI System was developed for tropospheric NO2 and total CO column number densities based on the Sentinel-5P NRTI products. After satellite scanning of Ukrainian territory, the NRTI System goes live in 2-3 hours. It is fully automatic, and modules were written using Python, VB.NET, and batch-scripting.

Results. The NRTI System includes four main phases: preparatory, source data downloading, processing and post-processing with visualization, archiving, and result distribution among users. Source data filtering with a quality assurance index and downscaling with linear kriging interpolation were developed. The output of the NRTI System is data in regular grids with a spatial resolution of 0.02o×0.02o. Based on the NRTI System work during October – December 2021, we conducted preliminary analyses to understand the possibilities of data usage. Higher NO2 content was observed in Kyiv and Kharkiv, where traffic emissions play a crucial role in air quality worsening. The use of daily time series allowed the detection of an increase in NO2 variance during the heating season, as well as plume distribution from cities to rural areas due to the prevailing wind. CO content is more homogeneous; however, higher values were observed in industrial Kryvyi Rig and Odesa. It is emphasized the huge impact of shipping CO emissions on air quality in Odesa. The temporal averaging of the NRTI System output allowed us to define the most polluted districts within the cities of interest. We intend to continue developing the presented NRTI System and develop the same algorithms for all cities with populations greater than 500 000 people in order to provide operational air pollution monitoring based on satellite data.

Downloads

Download data is not yet available.

Author Biographies

Mykhailo Savenets, Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine

PhD (Geography), Senior Researcher

Andrii Oreshchenko, Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine

PhD (Geography), Senior Researcher

Liudmyla Nadtochii, Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine

PhD (Geography), Senior Researcher

References

El-Khoury C., Alameddine I., Zalzal J., El-Fadel M., Hatzopoulou M. (2021). Assessing the intra-urban variability of nitrogen oxides and ozone across a highly heterogeneous urban area. Environ Monit. Assess., (193): 657 https://doi.org/10.1007/s10661-021-09414-2

Han W., Li Z., Guo J., Su T., Chen T., Wei J., Cribb M. (2020). The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan Regions across China. Remote Sensing, (12): 2320. https://doi.org/10.3390/rs12142320

Pinder R.W., Klopp J.M., Kleiman G., Hagler G.S.W., Awe Y., Terry S. (2019). Opportunities and Challenges for Fill-ing the Air Quality Data Gap in Low- and Middle-Income Countries. Atmospheric environment, (215): 116794. https://doi.org/10.1016/j.atmosenv.2019.06.032

Bovensmann H., Burrows J.P., Buchwitz M., Frerick J., Noël S., Rozanov V.V., Chance K.V., Goede A.P.H. (1999). SCIAMACHY: Mission Objectives and Measurement Modes. Journal of the Atmospheric Sciences, (56): 127-150 https://doi.org/10.1175/1520-0469(1999)056%3C0127:SMOAMM%3E2.0.CO;2

Burrows J.P., Richter A., Dehn A., Deters B., Orphal J. (1999). Atmospheric remote-sensing reference data from GOME-2. Temperature-dependent absorption cross sections of O3 in the 231-794 nm range. J. Quant. Spectrosc. Radiat. Transf., (61): 509-517 https://doi.org/10.1016/S0022-4073(97)00197-0

Salomonson V.V., Barnes W.L., Maymon P.W., Montgomery H.E., Ostrow H. (1989). MODIS: advanced facility in-strument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, (27): 145-153. https://doi.org/10.1109/36.20292

Veefkind J.P., Aben I., McMullan K., Förster H., de Vriese J., Otter G., Claas J., Eskes H.J., de Haan J.F., Kleipool Q., van Weele M., Hasekamp O., Hoogeveen R., Landgraf J., Snel R., Tol P., Ingmann P., Voors R., Kruizinga B., Vink R., Visser H., Leveltag P.F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, (120): 70-83. https://doi.org/10.1016/j.rse.2011.09.027

Richter A. (2010). Satellite remote sensing of tropospheric composition – principles, results, and challenges. EPJ Web of Conferences, (9): 181–189. https://doi.org/10.1051/epjconf/201009014

Borsdorff T., aan de Brugh J., Hu H., Hasekamp O., Sussmann R., Rettinger M., Hase F., Gross J., Schneider M., Gar-cia O., Stremme W., Grutter M., Feist D.G., Arnold S.G., De Mazière M., Kumar Sha M., Pollard D.F., Kiel M., Roehl C., Wennberg P.O., Toon G.C., Landgraf J. (2018). Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Tech., (11): 5507–5518. https://doi.org/10.5194/amt-11-5507-2018

Griffin D., Zhao X., McLinden C.A., Boersma F., Bourassa A., Dammers E., Degenstein D., Eskes H., Fehr L., Fio-letov V., Hayden K., Kharol S.K., Li S.-M., Makar P., Martin R.V., Mihele C., Mittermeier R.L., Krotkov N., Sneep M., Lamsal L.N., ter Linden M., van Geffen J., Veefkind P., Wolde M. (2019). High-Resolution Mapping of Nitrogen Di-oxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. Geophys. Res. Lett., (46): 1049–1060. https://doi.org/10.1029/2018GL081095

Saw G.K., Dey S., Kaushal H., Lal K. (2021). Tracking NO2 emission from thermal power plants in North India using TROPOMI data. Atmospheric Environment, (259): 118514. https://doi.org/10.1016/j.atmosenv.2021.118514

Griffith S.M., Huang W.-S., Lin Ch.-Ch., Chen Y.-Ch., Chang K.-E., Lin T.-H., Wang Sh.-H., Lin N.-H. (2020). Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Science of The Total Environment, (741): 140214. https://doi.org/10.1016/j.scitotenv.2020.140214

Ikeda K., Tanimoto H., Sugita T., Akiyoshi H., Clerbaux C., Coheur P.-F. (2021). Model and Satellite Analysis of Transport of Asian Anthropogenic Pollution to the Arctic: Siberian and Pacific Pathways and Their Meteorologi-cal Controls. JGR Atmospheresm (126): e2020JD033459. [https://doi.org/10.1029/2020JD033459]

Oluleye A. (2021). Satellite Observation of Spatio-temporal Variations in Nitrogen Dioxide over West Africa and Implications for Regional Air Quality. J. Health Pollut., (11): 210913. https://dx.doi.org/10.5696%2F2156-9614-11.31.210913

Shah V., Jacob D.J., Li K., Silvern R.F., Zhai S., Liu M., Lin J., Zhang Q. (2020). Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmos. Chem. Phys., (20): 1483–1495. https://doi.org/10.5194/acp-20-1483-2020

Stirnberg R., Cermak J., Fuchs J., Andersen H. (2020). Mapping and Understanding Patterns of Air Quality Using Satellite Data and Machine Learning. JGR Atmospheres, (125): e2019JD031380. https://doi.org/10.1029/2019JD031380

Levelt P.F., Oord G.H., Dobber M.R., Mälkki A., Visser H., Vries J.W., Stammes P., Lundell J., Saari H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, (44): 1093-1101. https://doi.org/10.1109/TGRS.2006.872333

Sentinel-5P. Sentinel Online/ ESA. Available at: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p

S5P Mission Performance Centre Nitrogen Dioxide Readme Available at: https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File

Savenets M.V., Dvoretska I.V., Nadtochii L.M. (2019). Current state of atmospheric air pollution in Ukraine based on Sentinel-5P satellite data. Visnyk of V. N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology”, (51): 221-233. [in Ukrainian] https://doi.org/10.26565/2410-7360-2019-51-16

Savenets М.V., Osadchyi V.І., Oreshchenko А.V. (2021). Atmospheric air quality monitoring over the territory of Ukraine with specification over the cities using Sentinel-5P satellite data. Visnyk of the National Academy of Sci-ences of Ukraine, (3): 50–58. [in Ukrainian] https://doi.org/10.15407/visn2021.03.050

Babii V., Gordiienko O., Tsyupa I. (2021). Comparative analysis of air quality in Kyiv by GIS and remote sensing in 2019–2020. Geoinformatics (May 2021), 1-6. https://doi.org/10.3997/2214-4609.20215521138

Savenets M., Osadchyi V., Oreshchenko A., Pysarenko L. (2020). Air Quality Changes in Ukraine during the April 2020 Wildfire Event. Geographica Pannonica, (24): 271-284 https://doi.org/10.5937/gp24-27436

Savenets M. Air pollution in Ukraine: a view from the Sentinel-5P satellite. Idojaras, (125): 271–290 https://doi.org/10.28974/idojaras.2021.2.6

Konceptsia Tsiliovoi program naukovyh doslidzhen’ NAN Ukrainy “Aerokosmichni sposterezhennya dovkillia v interesah stalogo rozvytku ta bezpeky” (ERAPLANET/UA) na 2021-2023 rr. Available at: https://www.nas.gov.ua/legaltexts/DocPublic/P-210217-44-1.pdf [in Ukrainian]

Sentinel-5P Data Products. Sentinel Online. Available at: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/data-products

Sentinel-5P Products and Algorithms. Sentinel Online Available at: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms

Air pollution: sources, impacts and controls (2019). Editors: P. Saxena, V. Naik. CABI, 216 http://dx.doi.org/10.1079/9781786393890.0000

Lama S., Houweling S., Boersma K. F., Eskes H., Aben I., Denier van der Gon H. A. C., Krol M.C., Dolman H., Bors-dorff T., Lorente, A. (2020). Quantifying burning efficiency in megacities using the NO2∕CO ratio from the Tropo-spheric Monitoring Instrument (TROPOMI). Atmos. Chem. Phys., (20), 10295–10310. https://doi.org/10.5194/acp-20-10295-2020

Silva S.J, Arellano A.F. (2017). Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2. Remote Sensing, (9): 744. https://doi.org/10.3390/rs9070744

van der Velde I.R., van der Werf G.R., Houweling S., Eskes H.J., Veefkind J.P., Borsdorff T., Aben I. (2021). Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI). Atmos. Chem. Phys., (21): 597–616. https://doi.org/10.5194/acp-21-597-2021

Sentinel-5P Pre-Operations Data Hub. Available at: https://s5phub.copernicus.eu/dhus/#/home

Papritz A., Stein A. (1999) Spatial prediction by linear kriging. Spatial Statistics for Remote Sensing. Remote Sensing and Digital Image Processing, (1). https://doi.org/10.1007/0-306-47647-9_6

Published
2022-12-01
Cited
How to Cite
Savenets, M., Oreshchenko, A., & Nadtochii, L. (2022). The system for near-real time air pollution monitoring over cities based on the Sentinel-5P satellite data. Visnyk of V. N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology", (57), 195-205. https://doi.org/10.26565/2410-7360-2022-57-15