Experimental substantiation of the NPEMFE geophysical method to solve engineering and geological problems
Abstract
Topicality. Preservation and increasing of soil fertility is the essential problem for the agricultural melioration. It was solved in the most intensive way during the period of 1960s-1980s within the framework of “Large-scale program of the melioration development”. Poor technical condition of the internal economic network of Dnipropetrovsk Region is peculiar for more than 136 thous. ha being 68.6 % of the irrigation land area. That results in considerable filtration losses, which stipulates both increased prime cost of the irrigation water and deterioration of environmental and melioration conditions of the neighbouring territories. For a long time, reconstruction of the irrigation system has not been financed properly. Implementation of the measures aimed at restoration and development of irrigation is one of the priorities of the Agreement on the Association between Ukraine and the European Union.
Nowadays, much attention is paid to diagnostics of technical state of hydroengineering structures (HES) in melioration systems of CC1 structure category (especially, to the retention basins of irrigation systems) involving non-destructive instrumental methods.
According to the recommendations of normative documents, it is proposed to determine the zones of increased filtration within the earth dam body, protective dams, and reservoir beds using a system of geophysical methods including the following ones: vertical electric sounding (VES), microelectric sounding (MES), electric profiling (EP), and method of natural electric fields (NEF).
Unfortunately, the mentioned methods are often rather cost- and labour-consuming ones. That emphasizes the topicality of developing and implementing the innovative methods for complex evaluation of technical condition and detection of hidden filtration zones within the bodies of earth HESs. That will help localize and maintain timely the identified site making it possible to prolong operation period of the object and prevent rise of ground water level within the neighbouring territories.
Objective of the paper is experimental substantiation of the efficiency of using labour- and time-saving geophysical NPEMFE method to detect filtration and watering zones, being undetected visually, within the hydroengineering structures of melioration systems to improve their operational qualities, reduce their maintenance cost, and prevent deterioration of environmental and melioration conditions of the neighbouring territories.
Research methodology. The following conventional methods were applied during the scientific and engineering survey activities: field – geophysical research methods NPEMFE and VES to determine filtration zones, which were not detected visually; experimental – involving odometer of standard modification to detect electromagnetic radiation during the loading of loose argillaceous soil samples; laboratory - standard techniques to specify physical and mechanical properties of soils before and after their compressive studies; computational-analytic – to determine dimensions of filtration water losses from the basin. Golden Software Surfer 8 and AutoCad 10 programme complexes were applied to process the obtained results.
Scientific novelty of the research results. For the first time, it has been proved experimentally that electromagnetic radiation increases when loaded with loose argillaceous samples and decreases when the samples are moist. That makes it possible to apply the NPEMFE method to identify visually non-detected filtration zones within the body of hydroengineering structures of melioration systems.
Practical value of the research: possibility to use time- and labour-saving NPEMFE method to identify visually non-detected zones of filtration and watering within the body of hydroengineering structures in melioration systems of CC1 structure category has been substantiated experimentally.
Downloads
References
Metodyka provedennya naturnykh obstezhenʹ zemlyanykh hrebelʹ i zakhysnykh damb vodohospodarsʹkoho pryznachennya. Posibnyk do VBN V.2.4-33-2.3-03-2000 «Rehulyuvannya rusel richok. Normy proektuvannya». [Methodology to perform field examination of earth dams and protective dams of hydroeconomic purpose. Manual for BCS В.2.4-33-2.3-03-2000 “River correction. Design standards”]. (2003). Kyiv: Institute of Hydroengineering and Melioration of the UAAS, 36. URL: http://ep3.nuwm.edu.ua/2809/1/nd121%20zah.pdf.
Pikarenia, D.S., Orlinskaia, О.V. (2009). Opyt primeneniia metoda yestestvennogo impul'snogo elektromagnitnogo polia Zemli (YEIEMPZ) dlya resheniia inzhenerno-geologicheskikh i geologicheskikh zadach [Practice of applying the method of natural pulse electromagnetic field of Earth (NPEMFE) to solve engineering and geological problems]. Dnepropetrovsk, Ukraine: SVIDLER, 120.
Orlinska, О. V., Chushkina, І. V., Pikarenia, D. S. (2018). Monitorinh tekhnichnoho stanu rehulyuyuchoho baseynu Kalynivsʹkoyi zroshuvalʹnoyi systemy heofizychnymy metodamy [Monitoring of technical state of the retention basin of Kalynivska irrigation system involving geophysical methods]. Proceedings from mizhnarodnoyi naukovo-praktychnoyi konferentsiyi «Pryroda dlya vody» – The International scientific and practical conference “Nature for Water”. (pp. 204-205). Kyiv: Institute of Water Problems and Melioration of the NASU [in Ukrainain].
Orlinska, О. V., Chushkina, І. V. Piiatnytsia І. V. &, Pikarenia D. S. (2015). Tekhnichnyy stan hidrotekhnichnykh sporud Dnipropetrovsʹkoyi oblasti [Technical state of hydroengineering structures of Dnipropetrovsk Region]. Newsletter of the National University of Water and Environmental Engineering, 3, 143–150 [in Ukrainain].
Orlinska, О. V., Pikarenia D. S., Maksymova N. М., Hapich H. V. & Ishchenko V. М. (2012). Otsinka mitsnostnykh vlastyvostey gruntovykh damb metodom pryrodnoho impulʹsnoho elektromahnitnoho polya Zemli [Evaluating strength properties of earth dams involving the method of natural impulse electromagnetic Earth’s field]. Collection of scientific papers of the NMU, 37, 17–23 [in Ukrainain].
Pikarenia, D. S., Orlinska О. V., Maksymova N. N., Hapich H. V., Chushkina І. V. &, Nakonechny V. H. (2018). Vyyavleniye zon fil'tratsii vody iz orositel'nykh sistem geofizicheskim metodom [Detecting filtration zones of irrigation systems by geophysical method]. Proceedings from mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Geosistemnyy podkhod k izucheniyu prirodnoy sredy Respubliki Kazakhstan» – The International scientific and practical conference “Geosystematic approach to studying natural environment of the Republic of Kazakhstan”. (pp.26-30). Astana: L.M. Gumiliov Eurasian National University. 2. [in Russian]
Vorobiov, А. А. (1977). Mekhanoelektricheskiye yavleniia preobrazovaniia energii pri plasticheskoy deformatsii tverdykh tel [Mechanoelectric phenomena of energy transformations in terms of plastic deformation of solid bodies]. Tomsk, Russia: TPI, 92.
Cheban, V. D. (2001). Metod pryrodnoho impulʹsnoho elektromahnitnoho polya Zemli. Deyaki aspekty zastosuvannya [Method of natural impulse electromagnetic Earth’s field. Some aspects of its application]. // Geophysical journal, 23(4), 112–121 [in Ukrainain].
Kuzmenko, E.D. Vdovina Ye. P., Cheban V. D. (2002). Ob ispol'zovanii nekotorykh elektricheskikh parametrov pri prognoze opolznevykh yavleniy [On using some electric parameters while predicting landslides]. Scientific Bulletin of the NMAU, 4, 89–91 [in Russian].
Salomatin, V. N. (2009). Mnogoletniy opyt primeneniia metoda YEIEMPZ pri reshenii kompleksa zadach v Ukraine [Long-term experience of applying the NPEMFE method while solving a complex of tasks in Ukraine]. Proceedings from Mezhdunarodnaya nauchnaya konferentsiya «Stanovleniye i razvitiye nauchnykh issledovaniy v vysshey shkole» –The International scientific conference “Origin and development of scientific studies in the higher educational institutions”. (pp. 384-391). Tomsk: Ed. House of TPU. 2. [in Russian].
Bespalko, А. А., Yavorovich L. V. (2009). Fizicheskoye modelirovaniye mekhanoelektricheskikh preobrazovaniy v obraztsakh gornakh porod [Physical modeling of mechanoelectric transformations within the rock samples]. Proceedings from Mezhdunarodnaya nauchnaya konferentsiya «Stanovleniye i razvitiye nauchnykh issledovaniy v vysshey shkole» –The International scientific conference “Origin and development of scientific studies in the higher educational institutions”. (pp. 306-313). Tomsk: Ed. House of TPU. 2. [in Russian].
Yakovishina, G. Ye. (2007). Razrabotka metoda i izmeritel'nykh sredstv diagnostiki kriticheskikh sostoyaniy gornykh porod na osnove elektromagnitnoy emissii [Developing a method and measuring means to diagnose critical states of rocks on the basis of electromagnetic emission]. Mining Institute of Siberian Branch of Russian Academy of Sciences. Novosibirsk. 45.
Bespalko, А. А. (2019). Fizicheskiye osnovy i realizatsiia metoda elektromagnitnoy emissii dlya monitoringa i kratkosrochnogo prognoza izmeneniy napryazhenno-deformirovannogo sostoyaniia gornykh porod [Physical basics and implementation of the method of electromagnetic emission to monitor and short-term prognosis of changes in stress-strain state of rocks]. Tomsk. 395.
Yavorovich, L. V. (2005). Vzaimosvyaz' parametrov elektromagnitnykh signalov s izmeneniyem napryazhenno-deformirovannogo sostoyaniia gornykh porod [Interconnection between the parameters of electromagnetic signals with changes in stress-strain state of rocks]. Tomsk. 190.
Sedlak, P., Sikula, J., Lokajicek, T., Mori, Y. (2008). Acoustic and electromagnetic emission as a tool for crack localization. Meas. Sci. Technol., 19, 4, 1–7. https://doi.org/10.1088/0957-0233/19/4/045701
Trubetskoi, К. N., Viktorov, S. D., Osokin, А. А., Shliapin, А. V. (2017). Prognoz gornykh udarov na osnove kontrolya emissii submikronnykh chastits pri deformirovanii i razrushenii gornykh porod [Prognosis of rock hits based on the control of submicron particles emission in terms of rock deformation and disintegration]. Mining journal, 6, 16–20 [in Russian].
Naoi, M., Otsuki, K., Nakatani, M. Yabe, Y. (2015). Steady activity of microfractures on geological faults loaded by mining stress. Tectonophysics, 649, 100–114.
Vavilov, V., Świderski, W., Derusova, D. (2015). Ultrasonic and optical stimulation in IR thermographic NDT of impact damage in carbon composites. Quantitative InfraRed Thermography Journal, 12(2), 162–172.
Bespalko, А. А., Yavorovich L. V., Yeremenko А. А., Shtirts V. А. (2018). Elektromagnitnaya emissiya gornykh porod posle vzryvov [Electromagnetic emission of rocks after blasting]. FTPRPI, 2, 10–18 [in Russian].
Cornet, F. H. (2016). Seismic and aseismic motions generated by fluid injections. Geomech. Energy Environ., 5, 42–54.
Balageas, D., Maldague, X., Burleigh, D., Vavilov, V. P., Oswald-Tranta, B., Roche, J. M. et al. (2016). Thermal (IR) and Other NDT Techniques for Improved Material Inspection. Journal of Nondestructive Evaluation, 35(1), 1–17. https://doi.org/10.1007/s10921-015-0331-7
Hagag, W. & Obermeyer, H. (2016). Detection of active faults using EMR Technique and Cerescope at Landau area in central Upper Rhine Graben, SW Germany. J. Appl. Geophys., 124, 117–129.
Zang, A., Stephansson, O., Stenberg, L., Plenkers, K., Specht, S., Milkereit, C., et al. (2017). Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sense or array. Geophys. J. Int., 208, 790–813. https://doi.org/10.1093/gji/ggw430
Rubinstein, J. L. & Mahani, A. B. (2015). Myths and Facts on waste water injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity, Seismol. Res. Lett., 86(4), 1060–1067.
Zaitsev, V. Yu., Kolpakov, А. B., Nazarov, V. Ye. (1999). Detektirovaniye akusticheskikh impul'sov v rechnom peske. Eksperiment [Detecting acoustic pulses within the river sand. Experiment]. Acoustic journal, 45(2), 235–241 [in Russian].
Bessmertnyi А. F. & Solomatin V. N. (1999). Resheniye inzhenerno-geologicheskikh zadach na osnovanii rezul'-tatov nablyudeniy yestestvennogo ímpul'snogo elektromagnitnogo polya Zemli [Solving engineering and geological problems based on the results of observation for natural impulse electromagnetic Earth’s field]. Geophys. Journal, 21(1), 119–126 [in Russian].
Dolgii, М. Ye. & Katayev, S. G. (2015). Issledovaniye yestestvennogo elektromagnitnogo polya Zemli [Studying natural impulse electromagnetic Earth’s field]. Newsletter of Tomsk State University, 2(34), 61–70 [in Russian].
Bespalko, А. А., Yavorovich, L. V., Viitman, Ye. V. & Fedotov, P. I. (2008). Mekhanoelektricheskiye preobrazovaniya v gornykh porodakh Tashtagol'skogo zhelezorudnogo mestorozhdeniya [Mechanic -electric transformations within the rocks of Tashagolsky iron ore deposit]. Geodynamics, 1(7), 54–60 [in Russian].
Bespalko, А. А., Yavorovich, L. V., Kolesnikova, S. I., Bukreyev V. G., Mertvetsov A. N. & Fedotov P.I. (2011). Issledovaniye izmeneniy kharakteristik elektromagnitnykh signalov pri odnoosnom szhatii obraztsov gornakh porod Tashtagol'skogo rudnika [Studying changes in characteristics of electromagnetic signals in terms of uniaxial compression of rock samples of Tashagolsky iron ore deposit]. News of HEIs. Physics,1/2, 78–84 [in Russian].
Yakovitskaia, G. Ye. (2008). Metody i tekhnicheskiye sredstva diagnostiki kriticheskikh sostoyaniy gornykh porod na osnove elektromagnitnoy emissii [Methods and technical means to diagnose critical state of rocks on the basis of electromagnetic emission]. Novosibirsk, Russia: Parallel, 315.
Yakovishina, G. Ye. (2007). Razrabotka metoda i izmeritel'nykh sredstv diagnostiki kriticheskikh sostoyaniy gornykh porod na osnove elektromagnitnoy emissii [Developing a method and measuring means to diagnose critical states of rocks basing on the electromagnetic emission]. Mining Institute of Siberian Branch of Russian Academy of Sciences. Novosibirsk. 45.
Aydin, A., Prance, R. J., Prance, H., Harland, C.J. (2009). Observation of pressure stimulated voltage in rocks us in gan electric potential sensor. Applied Physics Letters, 95(12). https://doi.org/10.1063/1.3236774
Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metody laboratornoho vyznachennya fizychnykh vlastyvostey [Bases and foundations of buildings and structures. Grounds. Methods of laboratory analysis of physical properties]. (2010). DSTU B V.2.1-17:2009 from 1st October 2010. Kyiv: Ministry of Energy and Construction of Ukraine [in Ukrainian].
Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metody laboratornoho vyznachennya kharakterystyk mitsnosti i deformatyvnosti [Bases and foundations of buildings and structures. Grounds. Methods of laboratory analysis of strength and deformability properties]. (1996). DSTU B V.2.1-4-96 from 1st April 1997. Kyiv: Ministry of Energy and Construction of Ukraine. [in Ukrainian].
Ruban, S. А., Shinkarevskii, М. А. (2009). Hidroheolohichni otsinky ta prohnozy rezhymu pidzemnykh vod Ukrayiny [Hydrogeological evaluation and prognosis of the ground water mode in Ukraine]. Kyiv: UkrDGRI, 572.
Osnovy ta pidvalyny budynkiv i sporud. Grunty. Klasyfikatsiya [Bases and foundations of buildings and structures. Grounds. Classification]. (1996). DSTU B V.2.1-2-96 from 1st October 1996. Kyiv: Derzhkommistobuduvannya Ukraine [in Ukrainian]
Zhelezniakov, G. V., Ibudzade Yu. А., Ivanov P. L. [et al.] (1983). Gidrotekhnicheskiye sooruzheniia (Spravochnik proyektirovshchika) [Hydroengineering structures (Manual of designer)]. Мoskow, Russia: Stroiizdat, 543.
Copyright (c) 2019 Chushkina I. V., Pikarenia D. S., Orlinska O. V., Maksymova N. M.
This work is licensed under a Creative Commons Attribution 4.0 International License.