Imitation modelling technology for gravity inversion cases
Abstract
Formulation of the problem. A gravity method is aimed at prospecting and exploration of mineral resources which are based on the study of the geological section structure. The task of quantitative interpretation of the gravimetric materials, which uses methods for solving direct and inverse gravity problems, is the modelling of a gravity field (direct problem) and geological media’s density structure (inverse problem). The important features of methods for density structure modelling of complex geological media are geological content, consistency with a priori data and its subordination to geological hypotheses. It is proposed to analyze these properties by a imitation technique.
The purpose of the article is to describe the imitation gravimetric modelling method, based on the construction of an informal sequence of equivalent solutions. The purpose of imitation modelling is to study the properties of gravity inversion in general formulation as well as to assess the degree of detail and reliability of the methodology and technologies of gravity modelling, which is claimed to be an effective solution to geological problems.
Methods. Imitation modelling technology and methods of solving gravity direct and inverse problems for geodensity model of complex geological environment.
Results. The examples of density and structural simulation testing of the informal sequence of equivalent solutions and its computer technologies show that complex interpretation of wells, seismic and gravity data enables to create detailed density models of geological medium. Studies have also been conducted of ways to increase the reliability of gravitational modelling.
Scientific novelty and practical significance. It is revealed that the best approximation of the regional background is an inclined plane, which approximates the observed gravity field along characteristic pickets over the research areas that are better studied. Also, an increase in the reliability of modelling can be achieved by rebuilding near side zones in structural type models in an interactive process of solving structural inverse gravity problems. Substantive modelling depends primarily on the experience of the interpreter, since computer technologies for solving direct and inverse gravity problems are only an interpretation tool.
Downloads
References
Petrovskyj O. P., Slobodyanyuk S. O., Ganzhenko N. S., Fedchenko N. S. (2013). Zastosuvannya integral`nogo prostorovogo geologo-geofizy`chnogo modelyuvannya dlya utochnennya osobly`vostej geologichnoyi budovy` Magdaly`nivs`koyi zapady`ny` [Application of integral spatial geological and geophysical modeling for specifi-cation of the features of the Magdalinovska depression geological structure], Heodynamika (Ukraine), 4(48), 33-42.
Barbosa C. F., Silva B. C. (1994). Generalized compact gravity inversion. Geophysics – January, 59 (1), 57–68.
Silva B. C., Barbosa C. F. (2006). Interactive gravity inversion. Geophysics – January-February, 71 (1), J1–J9.
Condi F. J., Zelt C. A., Sawyer D. S., and Hirasaki G. J. (1999). Gravity inversion for rifted margin deep structure using extension and isostatic constraints. Geophys. J. Int. 138, 435–446.
Hongzhu Cai, Bin Xiong and Yue Zhu 3D (2018). Modeling and Inversion of Gravity Data in Exploration Scale. Gravity-Geoscience Applications, Industrial Technology and Quantum Aspect, http://dx.doi.org/10.5772/intechopen.70961, 20.
Bulakh E. G., Markova M. N., Timoshenko V. I., Boyko P. D. (1984). Matematicheskoe obespechenie avtomatizirovan-noy sistemy interpretatsii gravitatsionnykh anomaliy [Mathematical software for an automated system for inter-preting gravitational anomalies], Kyiv, Nauk. dumka, 112.
Anikeyev, S. G., Maksymchuk, V. Yu., Melnyk, M. M. (2017). Gustinna model Kolomijskoyi paleodolini za geotraver-som SG-I (67) Nadvirna-Otiniya-Ivano-Frankivsk [Density model of the Kolomiya paleovalley along geotravers SG-1(67) Nadvirna-Otyniya- Ivano-Frankivsk]. Geodynamics, 1(22), 74-84.
Bulah, E. G. (2010). Pryamye i obratnye zadachi gravimetrii i magnitometrii. Matematicheskie metody geolog-icheskoj interpretacii gravimetricheskih i magnitometricheskih dannyh [Direct and inverse problems of gravimetry and magnetometry. Mathematical methods of geological interpretation of gravimetric and magnetometric data]. Naukova Dumka, 463.
Gintov, O. B., Orlyuk, M. I., Entin, V. A., Pashkevich, I. K., Mychak, S. V., Bakarzhieva, M. I., Shimkiv, L. M., Marchen-ko, A. V. (2018). Struktura zahidnoyi i centralnoyi chastin Ukrayinskogo shita. Spirni pitannya [The structure of the western and central parts of the Ukrainian shield. Controversial issues]. Geofizicheskij zhurnal 6(40), 3-29. http://dx.doi.org/10.24028/gzh.0203-3100.v40i6.2018.151000.
Kobrunov, A. I., Petrovskiy, A. P., Kobrunov, S. A. (2005). Evolyucionno-dinamicheskie principy pri rekonstrukcii strukturnyh plotnostnyh modelej sedimentacionnyh bassejnov [Evolutionary-dynamic principles in the reconstruc-tion of structural density models of sedimentary basins]. Geofizicheskij zhurnal, (3), 375-380.
Starostenko, V. I. (1978). Ustojchivye chislennye metody v zadachah gravimetrii [Sustainable numerical methods in gravimetric problems]. Naukova dumka, 226.
Bocin, A., Stephenson, R., Matenco, L., Mocanu, V. (2013). Gravity and magnetic modelling in the Vrancea Zone, south-eastern Carpathians: Redefinition of the edge of the East European Craton beneath the south-eastern Car-pathians. Journal of Geodynamics (71), 52–64.
Grabowska, T., Bojdys, G. (2001). The border of the East-European Craton in South-Eastern Poland based on gravity and magnetic data. Terra Nova, 13 (2), 92-98.
Yegorova, T. P., Kozlenko, V. G., Stephenson, R. A., Starostenko, V. I., Legostaeva, O. V. (1997). Preliminary 3-D den-sity model for the lithosphere of the Dniper-Donets Basin on the basis of gravity and seismic data. Geofizicheskij zhurnal, 19(1), 124-125.
Ján Šefara, Miroslav Bielik, Jozef Vozár, Martin Katona, Viktória Szalaiová, Anna Vozárová, Barbora Šimonová, Jaroslava Pánisová, Sabine Schmidt, Hans-Jürgen Götze (2017). 3D density modelling of Gemeric granites of the Western Carpathians. Geologica Carpathica, 68 (3), 177-192.
Boyko G. E., Anikeev C. G. (1990). Struktura Karpatskogo podnadviga (po dannym resheniya obratnoy gravi-metricheskoy zadachi) [The Carpathian sub-thrust structure (according to the inverse gravimetric problem solu-tion)] Tektonika i neftegazonocnoct podnadvigovykh zon, Moscow, Nauka, 53-61.
Anikeyev S. G., Kuzmenko E. D., Stankin O. V. (1995). Osoblyvosti gravitacijnogo monitoryngu na prykladi vyrishennya zadach kontrolyu ekspluataciyi sirchanyx rodovyshh [Features of gravitational monitoring on the example of solving the tasks of controlling the sulfur deposits operation], Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 32, 39-49.
Kuzmenko E. D., Anikeyev S. G., Shtogryn M. V. (1996). Osoblyvosti interpretaciyi gravimetrychnyx danyx metodom detalizaciyi pry kartuvanni karstovyx utvoren [Features of the gravimetric data interpretation by the method of detail for mapping karst formations], Heolohiya i heokhimiya horyuchykh kopalyn, 3-4, 178-183.
Bojko G. Yu., Lozynyak P. Yu., Zayacz X. B., Anikeyev S. G., Petrashkevych M. J., Kolodij V.V., Gajvanovych O. P. (2003). Glybynna geologichna budova Karpatskogo regionu [The deep geological structure of the Carpathian region], Heolohiya i heokhimiya horyuchykh kopalyn, 2, 52-62.
Anikeyev S. G. (1999). Methods of the interpretation of gravimetric materials for complex geological environments. The diss. of the candidate of geol. sci. 04.00.22], S. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Kyiv, 242.
Anikeyev S. G. (2008). Pro metodyku gravimetrychnogo monitoryngu zmin v budovi geologichnogo seredovyshha [On the gravimetric monitoring method of changes in the geological environment structure], Heodynamika (Ukraine), 1(7), 141-146.
Anikeyev S. G. (2013). Modelyuvannya gustynnoyi budovy rodovyshh samorodnoyi sirky za materialamy gravi-tacijnoyi dorozvidky [Modelling of the native sulfur deposits density structure on gravitational supplementary ex-ploration materials], Heodynamika (Ukraine), 1(14), 188-198.
Copyright (c) 2019 Anikeyev S. G., Bagriy S. M., Hablovskyi B. B.
This work is licensed under a Creative Commons Attribution 4.0 International License.