Analyzing urban morphology changes using neural networks
Abstract
Introduction to the problem. Urbanization demands advanced tools to analyze morphological changes caused by hostilities or disasters. This study bridges this gap by integrating artificial neural networks (ANNs) with LiDAR and GIS technologies, focusing on a site in Kharkiv, Ukraine, which was marginally impacted by the 2022 Russian invasion. Our key objective is to quantify urban resilience and transformation under extreme stress.
Review of previous works. Advances in CNNs and RNNs have enabled spatial-temporal analysis of LiDAR and multisource data. Recent methodologies improved feature extraction for urban change detection. However, gaps persisted in hostilities’ zone analysis, airborne and terrestrial LiDAR integration, and interpretability of ANN-driven insights.
Exposition of the main research material. Basics of ANNs for urban studies. This study employs two custom architectures:
1. ANN Similarity (Enhanced): A feedforward network using Mean Squared Error (MSE) loss and cosine similarity to predict dataset similarities. 2. Latest ANN Method: A deeper network with contrastive loss and Euclidean distance, emphasizing dissimilarity detection via convolutional/recurrent layers.
Applications in urban studies. The ANNs in this study were applied to the following from several listed industrial domains:
1. Routine Urban Monitoring: Detecting new constructions/demolitions in Tallinn, ESTONIA. 2. Hostilities Impact Analysis: Identifying war-induced structural changes in Kharkiv, UKRAINE. 3. 3D Feature Extraction: Automating building volumetry and change detection mapping from LiDAR point clouds.
Urban Remote Sensing with LiDAR. LiDAR’s millimeter-level accuracy enabled 3D modeling of urban features (e.g., building footprints, microtopography). Airborne (ALS) and mobile (MLS) LiDAR datasets were processed via proprietary iQ City Change Management (CCM) software, addressing challenges like ALS/MLS alignment and artifact filtering via point-density thresholds.
Case Study: urban change detection using LiDAR to assess hostilities’ impact. Methodology: the study analyzed multitemporal LiDAR datasets: Kharkiv (2019–2022): a 4 km² zone in Northern Saltivka, devastated by shelling. Tallinn (2017–2022): control datasets for routine redevelopment.
CCM Workflow: 1. Building Extraction (BE): identified structural features (Area, Volume, Height). 2. Change Detection (CD): classified changes as Added (new construction), Removed (demolition), or Unchanged.
ANN Analysis for comparing detected changes through Wolfram Mathematica: compared ANSE (similarity-focused) and LANN (dissimilarity-driven) methods. Results: The following changes detected. Kharkiv: 215 Added (pre-war redevelopment) and 51 Removed (war-induced demolitions) changes. The LANN method revealed stark contrasts (score: 0.35 and 0.32-0.42) between war-driven vs. routine redevelopment demolitions, capturing irregular demolitions. Tallinn: predictable redevelopment patterns (scores: 0.60-0.66 and 0.74), validating ANN accuracy for routine changes. Implications: LANN’s sensitivity to hidden features (e.g., structural degradation) gives policymakers detailed guidance for post-war recovery, and its divergence from statistical models highlights AI’s power to reveal unseen urban dynamics.
Conclusion. This research demonstrates how ANNs, fused with LiDAR/GIS, transcend traditional urban monitoring limitations. The framework offers scalable tools for disaster recovery, particularly in war zones.
Downloads
References
United Nations. (2018). 68% of the World Population Projected to live in Urban Areas by 2050, Says UN. Department of Economic and Social Affairs. Available at:https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
Weng O. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment. 117, 34-39. DOI: https://doi.org/10.1016/j.rse.2011.02.030.
Kostrikov S., Seryogin D. (2022). Urbogeosystemic Approach to Agglomeration Study within the Urban Remote Sensing Frameworks. Urban Agglomeration. Edited by A. Battisti and S. Baiani: Intech Open, London, Milan, Zagreb. 251-273. DOI: http://dx.doi.org/10.5772/intechopen.102482
Biljecki F., Stoter J., Ledoux H., Zlatanova S., Çöltekin A. (2015). Applications of 3D City Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 4, 2842–2889. DOI: https://doi:10.3390/ijgi4042842
Kostrikov S. Niemets L., Sehida K. [and other]. (2018). Geoinformation approach to the urban geographic system research (case studies of Kharkiv region). Visnyk of V.N. Karazin Kharkiv National University. Series “Geology. Geography. Ecology”. (49), 107-121. DOI: https://doi.org/10.26565/2410-7360-2018-49-09
Kostrikov S., Kravchenko K., Serohin D., Bilianska S., Savchenko A. (2023). The performance of the digital city projects in urban studies of the megalopolises (the case studies of Kharkiv and Dnipro cities). Visnyk of V. N. Karazin Kharkiv National University, series "Geology. Geography. Ecology", (59), 140-165. DOI: https://doi.org/10.26565/2410-7360-2023-59-11
Efe R., Onay T., Sharuno I., Atasoy E. (Editors.) (2014). Urban and Urbanization. Sofia: St. Kliment Ohridski University Press, 798.
Li Z. Chen B., Wu S. Su M., Chen J., Xu B. (2024). Deep learning for urban land use category classification: A review and experimental assessment. Remote Sensing of Environment. 311, 114290. DOI: https://doi.org/10.1016/j.rse.2024.114290
Kostrikov S., Niemets L., Robinson D., Mezentsev K., Kravchenko K., Serohin D. (2024). Delineation of the Hostilities’ Impact on Urban Environment by LiDAR Data Processing (a Case Study of Kharkiv). In: Morar, C., Berman, L., Erdal, S., Niemets, L. (eds) Achieving Sustainability in Ukraine through Military Brownfields Redevelopment. NATOARW 2023. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-024-2278-8_22
Gong P., Howarth P. J. (1992). Frequency-based contextual classification and gray-level vector reduction for land-use identification. Photogrammetric Engineering and Remote Sensing. 58(4), 423-437.
Gopal S., Woodcock C. E. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing. 34(2), 398-404. DOI: https://doi.org/10.1109/36.485117.
Mas J. F. (1999). Monitoring land-cover changes: A comparison of change detection techniques. International Journal of Remote Sensing. 20(1), 139-152. DOI: https://doi.org/10.1080/014311699213659
Pijanowski B.C., Brown D.G., Shellito B.A, Manik G.A. (2002). Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Computers, Environment and Urban Systems. 26 (6), 553-575. DOI: https://doi.org/10.1016/S0198-9715(01)00015-1
Yuan F., Sawaya K.E., Loeffelholz B.C., Bauer M.E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment. 98(2-3), 317-328. DOI: https://doi.org/10.1016/j.rse.2005.08.006
Lu, D., Mausel, P., Brondízio, E., Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing. 25(12), 2365-2401. DOI: https://doi.org/10.1080/0143116031000139863
Li K., Hu X., Jiang H., Shu Z., Zhang M. (2020). Attention-Guided Multi-Scale Segmentation Neural Network for Interactive Extraction of Region Objects from High-Resolution Satellite Imagery. Remote Sensing, 12(5), 789. DOI: https://doi.org/10.3390/rs12050789
Daudt R., Saux B., Boulch A., Gousseau Y. (2018). Urban change detection for multispectral Earth observation using convolutional neural networks. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE Xplore. DOI: https://doi.org/10.1109/IGARSS.2018.8518015
Chen J., Gong P., He C., Pu, R., Shi P. (2003). Land-use / land-cover change detection using improved change-vector analysis. Photogrammetric Engineering & Remote Sensing, 69(4), 369-379. DOI: https://doi.org/10.14358/PERS.69.4.369
Hussain M., Chen D., Cheng A., Wei H., Stanley D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing. 80, 91-106. DOI: https://doi.org/10.1016/j.isprsjprs.2013.03.006
Boulila W., Ghandorh H., Khan M., Ahmed F., Jawad Ahmad (2021). A novel CNN-LSTM-based approach to predict urban expansion. Ecological Informatics. 64, 101325. DOI: https://doi.org/10.1016/j.ecoinf.2021.101325
Zhu Z., Woodcock C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment. 144, 152-171. DOI: https://doi.org/10.1016/j.rse.2014.01.011
Shi W., Zhang M., Zhang R., Chen S., Zhan Z. (2020). Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sensing, 12(10), 1688. DOI: https://doi.org/10.3390/rs12101688
You Y., Cao J., Zhou W. (2020). A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios. Remote Sensing. 12(15), 2460. DOI: https://doi.org/10.3390/rs12152460
Tian S., Ma A., Zheng Z., Zhong Y. (2020). Hi-UCD: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv preprint arXiv:2011.03247. DOI: https://doi.org/10.48550/arXiv.2011.03247
Wang M., Tan K., Jia X., Wang X., Chen Y. (2020). A Deep Siamese Network with Hybrid Convolutional Feature Extraction Module for Change Detection Based on Multi-sensor Remote Sensing Images. Remote Sensing, 12(2), 205. DOI: https://doi.org/10.3390/rs12020205
Ankit U. (2024). Transformer Neural Networks: A Step-by-Step Breakdown [Electronic resource]. Built-In. Available at: https://builtin.com/artificial-intelligence/transformer-neural-network?utm_source=chatgpt.com
Radke R.J., Andra S., Al-Kofahi O., Roysam B. (2005). Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing. 14(3), 294-307. DOI: https://doi.org/10.1109/TIP.2004.838698
Yan J., Wang L. Song W., Chen Y., Chen X., Deng Z. (2019). A time-series classification approach based on change detection for rapid land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing. 158, 249-262. DOI: https://doi.org/10.1016/j.isprsjprs.2019.10.003
Reba M., Seto K. C. (2020). A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote sensing of environment, 242, 111739. DOI: https://doi.org/10.1016/j.rse.2020.111739
Zitzlsberger G., Podhorányi M., Svatoň V., Lazecký M., Martinovič J. (2021). Neural Network-Based Urban Change Monitoring with Deep-Temporal Multispectral and SAR Remote Sensing Data. Remote Sensing, 13(15), 3000. DOI: https://doi.org/10.3390/rs13153000
Hu F., Xia G.-S., Hu J., Zhang, L. (2015). Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sensing. 7(11), 14680-14707. DOI: https://doi.org/10.3390/rs71114680
Jaiswal S. (2025). Multilayer perceptrons in machine learning: a comprehensive guide. DataCamp. 2025. Available online: https://www.datacamp.com/tutorial/multilayer-perceptrons-in-machine-learning?utm_source=chatgpt.com
Principe J.C., Euliano N.R., Lefebvre W.C. (1999). Neural and Adaptive Systems: Fundamentals through Simulations. New York: John Wiley & Sons. 656.
Jimenez-Lopez E, Lopez-Rivero L.A. (2023). Artificial neural networks in the application of the growth of the urban sprawl. Publicacion Semestral Padi. 11(21), 109-119. DOI: http://dx.doi.org/10.29057/icbi.v11i21.10565
Zygmunt M., Gawin D. (2021). Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock. Energies, 14(24), 8285. DOI: https://doi.org/10.3390/en14248285
Kuang Z., Su J., Latifian A., Eshraghi S., Ghafri A. (2024) Utilizing Artificial neural networks (ANN) to regulate Smart cities for sustainable Urban Development and Safeguarding Citizen rights. Scientific Reports. 14, 31592. DO: https://doi.org/10.1038/s41598-024-76964-z
Kostrikov S., Pudlo R., Bubnov D., Vasiliev V. (2020). ELiT, multifunctional web-software for feature extraction from 3D LiDAR point clouds. ISPRS International Journal of Geo-Information. 9(11), 650-885. DOI: http://dx.doi.org/10.3390/ijgi9110650
Wang J., Lindenbergh R., Menent, M. (2017). SigVox – A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing. 128, 111-129. https://doi.org/10.1016/j.isprsjprs.2017.03.012.
Wang Y., Chen Q., Liu L., Li X., Sangaiah A.K., Li K. (2018). Systematic Comparison of Power Line Classification Methods from ALS and MLS Point Cloud Data. Remote Sens. 10, 1222. DOI: https://doi.org/10.3390/rs10081222.
Cheng L., Wu Y., Tong L., Chen Y., Li M. (2015). Hierarchical registration method for airborne and vehicle LiDAR point cloud. Remote Sensing 7, 13921–13944. https://doi.org/10.3390/rs71013921.
Republic of Estonia. Land and Spatial Development Board (2025). Estonian Geoportal. Available at: https://xgis.maaamet.ee/xgis2/page/app/maainfo
Kleemann F., Lehner H., Szczypińska A., Lederer J., Fellner J. (2017). Using change detection data to assess amount and composition of demolition waste from buildings in Vienna. Resource Conservation Recycling. 123, 37-46. https://doi.org/10.1016/j.resconrec.2016.06.010
Zhan Y., Zhan Y., Fu K., Yan M., Sun X., Wang H., Qiu X. (2017). Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geoscience and Remote Sensing Letters. 14 (10), 1845-1849. DOI: https://doi.org/10.1109/LGRS.2017.2738149
Kashtan V., Hnatushenko V. (2024). Machine learning for automatic extraction of water bodies using Sentinel-2 imagery. Radio Electronics, Computer Science, Control. 1, 118-127. DOI: https://doi.org/10.15588/1607-3274-2024-1-11
LeCun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278–2324. DOI: https://doi.org/10.1109/5.726791

This work is licensed under a Creative Commons Attribution 4.0 International License.
