English Оптимізація впливу температури на електричний розподіл конструкцій Із радіальними структурами p-n переходу

  • Джошкін Ш. Абдуллаєв Національний дослідницький університет TIIAME, фізико-хімічний факультет, Ташкент, Узбекистан https://orcid.org/0000-0001-6110-6616
  • Іброхім Б. Сапаєв Національний дослідницький університет TIIAME, фізико-хімічний факультет, Ташкент, Узбекистан; Західно-Каспійський університет, науковий співробітник, Баку, Азербайджан https://orcid.org/0000-0003-2365-1554
Ключові слова: ядро-оболонка, радіальний p-n-перехід, циліндричні координати, просторова густина заряду, арсенід галію (GaAs)

Анотація

Останніми роками досягнення в оптоелектроніці та електроніці віддають перевагу оптимізації продуктивності напівпровідникових пристроїв і зниженню енергоспоживання шляхом моделювання нових геометрій напівпровідникових пристроїв. Однією з таких інноваційних структур є структура радіального p-n переходу. У цій роботі ми представляємо концепцію, згідно з якою субмікронне тривимірне моделювання було проведено на структурах радіального p-n-переходу на основі матеріалу GaAs для дослідження впливу температури в діапазоні від 250 К до 500 К з кроком 50 К на електрофізичний розподіл, такий як просторовий заряд , електропотенціал і електричне поле в структурах радіального p-n переходу, а також різні прямі напруги. Зокрема, ми зосереджуємося на радіусі оболонки всередині конструкції: 0,5 μm і 1 μm для оболонки. Результати моделювання порівнювали з результатами, отриманими при розв’язуванні теоретичного рівняння Пуассона в циліндричній системі координат.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Sh. Qian, S. Misra, J. Lu, Z. Yu, L. Yu, J. Xu. J. Wang, et al., Appl. Phys. Lett. 107, 043902 (2015). https://doi.org/10.1063/1.4926991

E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Trans. Electron Devices, 58(9), 2903 (2011). https://doi.org/10.1109/TED.2011.2159608

Z. Arefinia, A. Asgari, Solar Energy Materials and Solar Cells, 137, 146 (2015). https://doi.org/10.1016/j.solmat.2015.01.032

O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Opto-Electronics Review, 27(2), 143 (2019). https://doi.org/10.1016/j.opelre.2019.05.003

R. Ragi, R.V.T. da Nobrega, U.R. Duarte, and M.A. Romero, IEEE Trans. Nanotechnol. 15(4), 627 (2016). https://doi.org/10.1109/TNANO.2016.2567323

R.D. Trevisoli, R.T. Doria, M. de Souza, S. Das, I. Ferain, and M.A. Pavanello, IEEE Trans. Electron Devices, 59(12), 3510 (2012). https://doi.org/10.1109/TED.2012.2219055

N.D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, Appl. Phys. Lett. 98(10), 103510 (2011). https://doi.org/10.1063/1.3559625

A.V. Babichev, H. Zhang, P. Lavenus, F.H. Julien, A.Y. Egorov, Y.T. Lin, and M. Tchernycheva, Applied Physics Letters, 103(20), 201103 (2013). https://doi.org/10.1063/1.4829756

D.H.K. Murthy, T. Xu, W.H. Chen, A.J. Houtepen, T.J. Savenije, L.D.A. Siebbeles, et al., Nanotechnology, 22(31), 315710 (2011). https://doi.org/10.1088/0957-4484/22/31/315710

B. Pal, K.J. Sarkar, and P. Banerji, Solar Energy Materials and Solar Cells, 204, 110217 (2020). https://doi.org/10.1016/j.solmat.2019.110217

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, and L. Samuelson, IEEE Journal of Photovoltaics, 6(1), 185 (2016). https://doi.org/10.1109/JPHOTOV.2015.2484967

P. Dubey, B. Kaushik, and E. Simoen, IET Circuits, Devices & Systems, (2019). https://doi.org/10.1049/iet-cds.2018.5169

M.-D. Ko, T. Rim, K. Kim, M. Meyyappan, and C.-K. Baek, Scientific Reports, 5(1), 11646 (2015). https://doi.org/10.1038/srep11646

A.M. de Souza, D.R. Celino, R. Ragi, and M.A. Romero, Microelectronics J. 119, 105324 (2021). https://doi.org/10.1016/j.mejo.2021.105324

M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, et al., Energy & Environmental Science, 3(8), 1037 (2010). https://doi.org/10.1039/C0EE00014K

S. Osono, Y. Uchiyama, M. Kitazoe, K. Saito, M. Hayama, A. Masuda, A. Izumi, et al., Thin Solid Films, 430, 165 (2003). https://doi.org/10.1016/S0040-6090(03)00100-7

R. Elbersen, R.M. Tiggelaar, A. Milbrat, G. Mul, H. Gardeniers, and J. Huskens, Advanced Energy Materials, 5(6), 1401745 (2014). https://doi.org/10.1002/aenm.201401745

A.A. Leonardi, M.J.L. Faro, and A. Irrera, A Review. Nanomaterials, 11(2), 383 (2021). https://doi.org/10.3390/nano11020383

A. Yesayan, F. Jazaeri, and J.-M. Sallese, IEEE Trans. Electron Devices, 63(3), 1368 (2016). https://doi.org/10.1109/TED.2016.2521359

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, Scientific Reports, 5(1), 11532 (2015). https://doi.org/10.1038/srep11532

J.C. Shin, D. Chanda, W. Chern, K.J. Yu, J.A. Rogers, and X. Li, IEEE Journal of Photovoltaics, 2(2), 129 (2012). https://doi.org/10.1109/JPHOTOV.2011.2180894

D. Choi, and K. Seo, Advanced Energy Materials, 11(5), 2003707 (2021). https://doi.org/10.1002/aenm.202003707

M. Shahram, T. Iman, and N.R. Mahdiyar, Optical and Quantum Electronics, 54(2), 115 (2022). https://doi.org/10.1007/s11082-021-03499-2

Bryan Melanson, M. Hartensveld, C. Liu, and J. Zhang, AIP Advances, 11(9), 095005 (2021). https://doi.org/10.1063/5.0061381

Y. Xiao, B. Zhang, H. Lou, L. Zhang, and X. Lin, IEEE Trans. Electron Devices, 63(5), 2176 (2016). https://doi.org/10.1109/TED.2016.2535247

B. Liu, J. Wang, Z. Li, Z. Sun, C. Li, J.-M. Seo, J. Li, et al., Nano Energy, 126, 109611 (2024). https://doi.org/10.1016/j.nanoen.2024.109611

R.K. Patnaik, and D.P. Pattnaik, in: 2016 International Conference on Signal Processing, Communication, Power and Embedded Systems (SCOPES), (Paralakhemundi, India, 2016). https://doi.org/10.1109/SCOPES.2016.7955628

A.C.E. Chia, and R.R. LaPierre, J. Appl. Phys. 112, 063705 (2012). https://doi.org/10.1063/1.4752873

S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, Third Edition, (John Wiley & Sons, Inc., 2007).

G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, et al., Phys. Status Solidi (RRL), 3, 112 (2009). https://doi.org/10.1002/pssr.200903057

T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber, Energy Environ. Sci. 6(3), 719 (2013). https://doi.org/10.1039/c3ee24182c

M.I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67(9), 3568 (2020). https://doi.org/10.1109/TED.2020.3011645

D.R. Bachman, S.E. Park, S. Thaveepunsan, J.S. Fitzsimmons, K.-N. An, and S.W. O’Driscoll, Journal of Orthopaedic Trauma, 1 (2018). https://doi.org/10.1097/BOT.0000000000001278

Опубліковано
2024-09-02
Цитовано
Як цитувати
Абдуллаєв, Д. Ш., & Сапаєв, І. Б. (2024). English Оптимізація впливу температури на електричний розподіл конструкцій Із радіальними структурами p-n переходу. Східно-європейський фізичний журнал, (3), 344-349. https://doi.org/10.26565/2312-4334-2024-3-39