Optimization of The Influence of Temperature on The Electrical Distribution of Structures with Radial p-n Junction Structures

  • Jo`shqin Sh. Abdullayev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan https://orcid.org/0000-0001-6110-6616
  • Ibrokhim B. Sapaev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan; Western Caspian University, Scientific researcher, Baku, Azerbaijan https://orcid.org/0000-0003-2365-1554
Keywords: Core-shell, Radial p-n junction, Cylindrical coordinates, Space charge density, Gallium Arsenide (GaAs)

Abstract

In recent years, advances in optoelectronics and electronics have prioritized optimizing semiconductor device performance and reducing power consumption by modeling new semiconductor device geometries. One such innovative structure is the radial p-n junction structure. In this work, we present a concept that submicron three-dimensional simulations were conducted on radial p-n junction structures based on GaAs material to investigate the influence of temperature ranging from 250K to 500K with a step of 50K on the electrophysical distribution, such as space charge, electro-potential, and electric field, in radial p-n junction structures, as well as various forward voltages. In particular, we focus on the shell radius within the structure: 0.5 μm and 1 μm for the shell. The modeling results were compared with the results obtained from solving the theoretical Poisson equation in the cylindrical coordinate system.

Downloads

Download data is not yet available.

References

Sh. Qian, S. Misra, J. Lu, Z. Yu, L. Yu, J. Xu. J. Wang, et al., Appl. Phys. Lett. 107, 043902 (2015). https://doi.org/10.1063/1.4926991

E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Trans. Electron Devices, 58(9), 2903 (2011). https://doi.org/10.1109/TED.2011.2159608

Z. Arefinia, A. Asgari, Solar Energy Materials and Solar Cells, 137, 146 (2015). https://doi.org/10.1016/j.solmat.2015.01.032

O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Opto-Electronics Review, 27(2), 143 (2019). https://doi.org/10.1016/j.opelre.2019.05.003

R. Ragi, R.V.T. da Nobrega, U.R. Duarte, and M.A. Romero, IEEE Trans. Nanotechnol. 15(4), 627 (2016). https://doi.org/10.1109/TNANO.2016.2567323

R.D. Trevisoli, R.T. Doria, M. de Souza, S. Das, I. Ferain, and M.A. Pavanello, IEEE Trans. Electron Devices, 59(12), 3510 (2012). https://doi.org/10.1109/TED.2012.2219055

N.D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, Appl. Phys. Lett. 98(10), 103510 (2011). https://doi.org/10.1063/1.3559625

A.V. Babichev, H. Zhang, P. Lavenus, F.H. Julien, A.Y. Egorov, Y.T. Lin, and M. Tchernycheva, Applied Physics Letters, 103(20), 201103 (2013). https://doi.org/10.1063/1.4829756

D.H.K. Murthy, T. Xu, W.H. Chen, A.J. Houtepen, T.J. Savenije, L.D.A. Siebbeles, et al., Nanotechnology, 22(31), 315710 (2011). https://doi.org/10.1088/0957-4484/22/31/315710

B. Pal, K.J. Sarkar, and P. Banerji, Solar Energy Materials and Solar Cells, 204, 110217 (2020). https://doi.org/10.1016/j.solmat.2019.110217

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, and L. Samuelson, IEEE Journal of Photovoltaics, 6(1), 185 (2016). https://doi.org/10.1109/JPHOTOV.2015.2484967

P. Dubey, B. Kaushik, and E. Simoen, IET Circuits, Devices & Systems, (2019). https://doi.org/10.1049/iet-cds.2018.5169

M.-D. Ko, T. Rim, K. Kim, M. Meyyappan, and C.-K. Baek, Scientific Reports, 5(1), 11646 (2015). https://doi.org/10.1038/srep11646

A.M. de Souza, D.R. Celino, R. Ragi, and M.A. Romero, Microelectronics J. 119, 105324 (2021). https://doi.org/10.1016/j.mejo.2021.105324

M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, et al., Energy & Environmental Science, 3(8), 1037 (2010). https://doi.org/10.1039/C0EE00014K

S. Osono, Y. Uchiyama, M. Kitazoe, K. Saito, M. Hayama, A. Masuda, A. Izumi, et al., Thin Solid Films, 430, 165 (2003). https://doi.org/10.1016/S0040-6090(03)00100-7

R. Elbersen, R.M. Tiggelaar, A. Milbrat, G. Mul, H. Gardeniers, and J. Huskens, Advanced Energy Materials, 5(6), 1401745 (2014). https://doi.org/10.1002/aenm.201401745

A.A. Leonardi, M.J.L. Faro, and A. Irrera, A Review. Nanomaterials, 11(2), 383 (2021). https://doi.org/10.3390/nano11020383

A. Yesayan, F. Jazaeri, and J.-M. Sallese, IEEE Trans. Electron Devices, 63(3), 1368 (2016). https://doi.org/10.1109/TED.2016.2521359

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, Scientific Reports, 5(1), 11532 (2015). https://doi.org/10.1038/srep11532

J.C. Shin, D. Chanda, W. Chern, K.J. Yu, J.A. Rogers, and X. Li, IEEE Journal of Photovoltaics, 2(2), 129 (2012). https://doi.org/10.1109/JPHOTOV.2011.2180894

D. Choi, and K. Seo, Advanced Energy Materials, 11(5), 2003707 (2021). https://doi.org/10.1002/aenm.202003707

M. Shahram, T. Iman, and N.R. Mahdiyar, Optical and Quantum Electronics, 54(2), 115 (2022). https://doi.org/10.1007/s11082-021-03499-2

Bryan Melanson, M. Hartensveld, C. Liu, and J. Zhang, AIP Advances, 11(9), 095005 (2021). https://doi.org/10.1063/5.0061381

Y. Xiao, B. Zhang, H. Lou, L. Zhang, and X. Lin, IEEE Trans. Electron Devices, 63(5), 2176 (2016). https://doi.org/10.1109/TED.2016.2535247

B. Liu, J. Wang, Z. Li, Z. Sun, C. Li, J.-M. Seo, J. Li, et al., Nano Energy, 126, 109611 (2024). https://doi.org/10.1016/j.nanoen.2024.109611

R.K. Patnaik, and D.P. Pattnaik, in: 2016 International Conference on Signal Processing, Communication, Power and Embedded Systems (SCOPES), (Paralakhemundi, India, 2016). https://doi.org/10.1109/SCOPES.2016.7955628

A.C.E. Chia, and R.R. LaPierre, J. Appl. Phys. 112, 063705 (2012). https://doi.org/10.1063/1.4752873

S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, Third Edition, (John Wiley & Sons, Inc., 2007).

G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, et al., Phys. Status Solidi (RRL), 3, 112 (2009). https://doi.org/10.1002/pssr.200903057

T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber, Energy Environ. Sci. 6(3), 719 (2013). https://doi.org/10.1039/c3ee24182c

M.I. Khan, I.K.M.R. Rahman, and Q.D.M. Khosru, IEEE Trans. Electron Devices, 67(9), 3568 (2020). https://doi.org/10.1109/TED.2020.3011645

D.R. Bachman, S.E. Park, S. Thaveepunsan, J.S. Fitzsimmons, K.-N. An, and S.W. O’Driscoll, Journal of Orthopaedic Trauma, 1 (2018). https://doi.org/10.1097/BOT.0000000000001278

Citations

OPTIMIZING THE INFLUENCE OF DOPING AND TEMPERATURE ON THE ELECTROPHYSICAL FEATURES OF P-N AND P-I-N JUNCTION STRUCTURES
Abdullayev J.SH. & Sapaev I.B. (2024) Eurasian Physical Technical Journal
Crossref

Modeling and Theoretical Study of p-n Heterojunctions Based on CdTe/Si: Band Alignment, Carrier Transport, and Temperature-Dependent Electrophysical Properties
Sadullaev Sadula O., Sapaev Ibrokhim B. & Abdikarimov Khidoyat E. (2025) East European Journal of Physics
Crossref

Mathematical Modeling of Incomplete Ionization in Radial p-Si/n-GaAs Heterojunctions: Temperature and Doping Effects
Abdullayev Jo‘shqin Shakirovich, Sapaev Ibroxim Bayramdurdiyevich, Abdullayev Jonibek Shakirovich, Juraev Davron Aslonqulovich, Jalalov Mahir Jalal & Elsayed Ebrahim E. (2025) Journal of Electronic Materials
Crossref

Impacts of Local Oxide Trapped Charge on Electrical and Capacitance Characteristics of SOI FinFet
Atamuratov Atabek, Karimov Ibroximjon, Foziljonov Mirzabahrom, Abdikarimov Azamat, Atamuratov Odilbek & Khalilloev Makhkam (2025) East European Journal of Physics
Crossref

Theoretical analysis of incomplete ionization on the electrical behavior of radial p-n junction structures
Abdullayev J. Sh., Sapaev I. B. & Juraev Kh. N. (2025) Low Temperature Physics
Crossref

Factors Influencing the Ideality Factor of Semiconductor p-n and p-i-n Junction Structures at Cryogenic Temperatures
Abdullayev Jo`shqin & Sapaev Ibrokhim B. (2024) East European Journal of Physics
Crossref

Temperature Response Curve of Silicon Diode Temperature Sensors
Istamov Damir B., Abdulkhayev Oybek A., Kuliyev Shukurullo M., Abdullayev Nuraddin , Ashirov Shamshidin A. & Yodgorova Dilbara M. (2025) East European Journal of Physics
Crossref

Bandgap-Engineered pSi/n-CdₓS₁₋ₓ Heterojunctions: Effect of Composition on Optoelectronic Behavior
Sapaev Ibrokhim B., Razzokov Jamoliddin I., Abdullayev Jo‘shqin Sh., Qalandarova Dildora A. & Ibragimova Madinabonu Sh. (2025) East European Journal of Physics
Crossref

Published
2024-09-02
Cited
How to Cite
Abdullayev, J. S., & Sapaev, I. B. (2024). Optimization of The Influence of Temperature on The Electrical Distribution of Structures with Radial p-n Junction Structures. East European Journal of Physics, (3), 344-349. https://doi.org/10.26565/2312-4334-2024-3-39